题目列表(包括答案和解析)
如图,已知圆锥体
的侧面积为
,底面半径
和
互相垂直,且
,
是母线
的中点.
![]()
(1)求圆锥体的体积;
(2)异面直线
与
所成角的大小(结果用反三角函数表示).
【解析】本试题主要考查了圆锥的体积和异面直线的所成的角的大小的求解。
第一问中,由题意,
得
,故![]()
从而体积
.2中取OB中点H,联结PH,AH.
由P是SB的中点知PH//SO,则
(或其补角)就是异面直线SO与PA所成角.
由SO
平面OAB,
PH
平面OAB,PH
AH.在
OAH中,由OA
OB得
;
在
中,
,PH=1/2SB=2,
,
则
,所以异面直线SO与P成角的大arctan![]()
解:(1)由题意,
得
,
故
从而体积
.
(2)如图2,取OB中点H,联结PH,AH.
![]()
由P是SB的中点知PH//SO,则
(或其补角)就是异面直线SO与PA所成角.
由SO
平面OAB,
PH
平面OAB,PH
AH.
在
OAH中,由OA
OB得
;
在
中,
,PH=1/2SB=2,
,
则
,所以异面直线SO与P成角的大arctan![]()
已知椭圆![]()
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(I)求椭圆
的方程;
(II)若过点
(2,0)的直线与椭圆
相交于两点
,设
为椭圆上一点,且满足
(O为坐标原点),当
<
时,求实数
的取值范围.
【解析】本试题主要考查了椭圆的方程以及直线与椭圆的位置关系的运用。
第一问中,利用![]()
第二问中,利用直线与椭圆联系,可知得到一元二次方程中
,可得k的范围,然后利用向量的
<
不等式,表示得到t的范围。
解:(1)由题意知
![]()
已知数列
满足
,![]()
(1)求证:数列
是等比数列;
(2)求数列
的通项和前n项和
.
【解析】第一问中,利用
,得到
从而得证
第二问中,利用∴
∴
分组求和法得到结论。
解:(1)由题得
………4分
……………………5分
∴数列
是以2为公比,2为首项的等比数列;
……………………6分
(2)∴
……………………8分
∴
……………………9分
∴![]()
已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线
的焦点为F1.
(Ⅰ)求椭圆E的方程;
(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.
【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到
,又因为
,这样可知得到
。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到
,再利用
可以结合韦达定理求解得到m的值和圆p的方程。
解:(Ⅰ)设椭圆E的方程为![]()
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以椭圆E的方程为
…………………………4分
(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分
代入椭圆E方程,得
…………………………6分
………………………7分
、
………………8分
![]()
………………………9分
![]()
……………………………10分
当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,
圆P的方程为(x-2)2+(y-1)2=4;………………………………11分
同理,当m=-3时,直线l方程为y=-x-3,
圆P的方程为(x+2)2+(y+1)2=4
已知函数
,
(1)求函数
的定义域;
(2)求函数
在区间
上的最小值;
(3)已知
,命题p:关于x的不等式
对函数
的定义域上的任意
恒成立;命题q:指数函数
是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
【解析】第一问中,利用由
即![]()
![]()
第二问中,
,
得:
![]()
,
![]()
第三问中,由在函数
的定义域上
的任意
,
,当且仅当
时等号成立。当命题p为真时,
;而命题q为真时:指数函数
.因为“p或q”为真,“p且q”为假,所以
当命题p为真,命题q为假时;当命题p为假,命题q为真时分为两种情况讨论即可 。
解:(1)由
即![]()
![]()
(2)
,
得:
![]()
,
![]()
(3)由在函数
的定义域上
的任意
,
,当且仅当
时等号成立。当命题p为真时,
;而命题q为真时:指数函数
.因为“p或q”为真,“p且q”为假,所以
当命题p为真,命题q为假时,![]()
当命题p为假,命题q为真时,
,
所以![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com