题目列表(包括答案和解析)
设椭圆
的左、右顶点分别为
,点
在椭圆上且异于
两点,
为坐标原点.
(Ⅰ)若直线
与
的斜率之积为
,求椭圆的离心率;
(Ⅱ)若
,证明直线
的斜率
满足![]()
【解析】(1)解:设点P的坐标为
.由题意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以椭圆的离心率![]()
(2)证明:(方法一)
依题意,直线OP的方程为
,设点P的坐标为
.
由条件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依题意,直线OP的方程为
,设点P的坐标为
.
由P在椭圆上,有![]()
因为
,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
如图,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1.
(Ⅰ)求证:BE=EB1;
(Ⅱ)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.
![]()
注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).
![]()
(Ⅰ)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.
① ∵
∴EG⊥侧面AC1;取AC的中点F,连结BF,FG,由AB=BC得BF⊥AC,
② ∵
∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.
③ ∵
∴BE∥FG,四边形BEGF是平行四边形,BE=FG,
④ ∵
∴FG∥AA1,△AA1C∽△FGC,
⑤ ∵
即
,故![]()
【答案】![]()
【解析】设
,有几何意义知
的最小值为
, 又因为存在实数x满足
,所以只要2大于等于f(x)的最小值即可.即
2,解得:
∈
,所以a的取值范围是
.故答案为:
.
已知函数
=
.
(Ⅰ)当
时,求不等式
≥3的解集;
(Ⅱ) 若
≤
的解集包含
,求
的取值范围.
【命题意图】本题主要考查含绝对值不等式的解法,是简单题.
【解析】(Ⅰ)当
时,
=
,
当
≤2时,由
≥3得
,解得
≤1;
当2<
<3时,
≥3,无解;
当
≥3时,由
≥3得
≥3,解得
≥8,
∴
≥3的解集为{
|
≤1或
≥8};
(Ⅱ)
≤![]()
![]()
,
当
∈[1,2]时,
=
=2,
∴
,有条件得
且
,即
,
故满足条件的
的取值范围为[-3,0]
已知数列
满足
(I)求数列
的通项公式;
(II)若数列
中
,前
项和为
,且
证明:
![]()
【解析】第一问中,利用
,![]()
∴数列{
}是以首项a1+1,公比为2的等比数列,即
![]()
第二问中,
![]()
进一步得到得
即![]()
即
是等差数列.
然后结合公式求解。
解:(I) 解法二、
,![]()
∴数列{
}是以首项a1+1,公比为2的等比数列,即
![]()
(II)
………②
由②可得:
…………③
③-②,得
即
…………④
又由④可得
…………⑤
⑤-④得![]()
即
是等差数列.
![]()
![]()
![]()
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com