题目列表(包括答案和解析)
如图,已知∠1 =∠2,∠B =∠C,可推得AB∥CD。理由如下:
![]()
∵∠1 =∠2(已 知),
且∠1 =∠CGD(__________________________)
∴∠2 =∠CGD(等量代换)
∴CE∥BF(_______________________________)
∴∠ =∠BFD(__________________________)
又∵∠B =∠C(已 知)
∴∠BFD =∠B(等量代换)
∴AB∥CD(________________________________)
【解析】根据对顶角性质和已知推出∠2=∠CGD,推出CE∥BF,根据平行线的性质推出∠BFD=∠B即可
(2011•潼南县)为迎接2011年高中招生考试,某中学对全校九年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行【解析】,绘制成了如下两幅不完整的统计图,请根据图中所给信息,【答案】下列问题:![]()
(1)请将表示成绩类别为“中”的条形统计图补充完整;
(2)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角是 72 度;
(3)学校九年级共有1000人参加了这次数学考试,估算该校九年级共有多少名学生的数学成绩可以达到优秀?
【答案】60°。
【考点】平行线的性质;三角形的外角性质.
【分析】利用三角形的一个外角等于与它不相邻的两个内角的和求出∠3的同位角的度数,再根据两直线平行,同位角相等即可求解.
【解答】如图,∵∠1=130°,∠2=70°,
∴∠4=∠1-∠2=130°-70°=60°,
∵a∥b,
∴∠3=∠4=60°.
故答案为:60°.
【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,准确识图,理清图中各角度之间的关系是解题的关键.
完成下列证明(每空1分,共7分)
在括号内填写理由.(1) 如图,已知∠B+∠BCD=180°,∠B=∠D. 求证:∠E=∠DFE.
![]()
证明:∵∠B+∠BCD=180°( ),
∴AB∥CD ( )
∴∠B=∠DCE( )
又∵∠B=∠D( ),
∴∠DCE=∠D ( )
∴AD∥BE( )
∴∠E=∠DFE( )
【解析】根据平行线的判定以及平行线的性质,逐步进行分析解答即可得出答案
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com