题目列表(包括答案和解析)
(14分) 已知二次函数
为偶函数,函数
的图象与直线y=x相切.
(1)求
的解析式
(2)若函数
上是单调减函数,那么:
①求k的取值范围;
②是否存在区间[m,n](m<n(14分)已知直线L过抛物线x2=2py(p>0)的焦点F,且与抛物线交于A,B两点,Q是线段AB的中点,M是抛物线的准线与y轴的交点,0是坐标原点
(1)若直线L与x轴平行,且直线与抛物线所围区域的面积为6,求p的值.
(2)过A,B两点分别作该抛物线的切线,两切线相交于N点,求证:
,![]()
(14分)已知函数
,( x>0).
(I)当0<a<b,且f(a)=f(b)时,求证:ab>1;
(II)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.
(III)若存在实数a,b(a<b),使得函数y=f(x)的定义域为 [a,b]时,值域为 [ma,mb]
(m≠0),求m的取值范围.
(14分)如图,在直角梯形
中,
,
,
,椭圆以
、
为焦点且经过点
.
(Ⅰ)建立适当的直角坐标系,求椭圆的方程;
(Ⅱ)若点
满足
,问是否存在直线
与椭圆交于
两点,且
?若存在,求出直线
与
夹角
的正切值的取值范围;若不存在,请说明理由.
![]()
(14分)己知
、
、
是椭圆
:
(
)上的三点,其中点
的坐标为
,
过椭圆的中心,且
,
。
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线
(斜率存在时)与椭圆
交于两点
,
,设
为椭圆
与
轴负半轴的交点,且
,求实数
的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com