(1)求圆和圆的方程, 查看更多

 

题目列表(包括答案和解析)

椭圆的方程为,离心率为,且短轴一端点和两焦点构成的三角形面积为1,抛物线的方程为,抛物线的焦点F与椭圆的一个顶点重合.
(1)求椭圆和抛物线的方程;
(2)过点F的直线交抛物线于不同两点A,B,交y轴于点N,已知的值.
(3)直线交椭圆于不同两点P,Q,P,Q在x轴上的射影分别为P′,Q′,满足(O为原点),若点S满足,判定点S是否在椭圆上,并说明理由.

查看答案和解析>>

椭圆的方程为,离心率为,且短轴一端点和两焦点构成的三角形面积为1,抛物线的方程为,抛物线的焦点F与椭圆的一个顶点重合.
(1)求椭圆和抛物线的方程;
(2)过点F的直线交抛物线于不同两点A,B,交y轴于点N,已知的值.
(3)直线交椭圆于不同两点P,Q,P,Q在x轴上的射影分别为P′,Q′,满足(O为原点),若点S满足,判定点S是否在椭圆上,并说明理由.

查看答案和解析>>

已知圆的方程和P点坐标,求经过P点的圆的切线方程.
(1)(x+2)2+(y-3)2=13,P(1,5);
(2)x2+y2=9,P(3,4).

查看答案和解析>>

已知圆的方程x2+y2=25,点A为该圆上的动点,AB与x轴垂直,B为垂足,点P分有向线段BA的比λ=
32

(1)求点P的轨迹方程并化为标准方程形式;   
(2)写出轨迹的焦点坐标和准线方程.

查看答案和解析>>

已知圆的方程x2+y2=25,点A为该圆上的动点,AB与x轴垂直,B为垂足,点P分的比λ=

⑴试求点P的轨迹E的方程; w.w.w.k.s.5.u.c.o.m      

⑵写出轨迹E的焦点坐标和准线方程.

查看答案和解析>>

一、填空题:本大题共14小题,每小题5分,计70分.

1.第二象限  2. 3   3.Π   4.   5. __ 6. 2  7.

8.   9. 10  10.向右平移  11. 3.5  12.①④   13.  14.①③

二、解答题:本大题共6小题,计90分.

15.解:(1)

,即

(2)

,即的取值范围是

16.(Ⅰ)证明:连结AF,在矩形ABCD中,因为AD=4,AB=2,点F是BC的中点,所以∠AFB=∠DFC=45°.所以∠AFD=90°,即AF⊥FD.又PA⊥平面ABCD,所以PA⊥FD.  

所以FD⊥平面PAF.  故PF⊥FD. 

(Ⅱ)过E作EH//FD交AD于H,则EH//平面PFD,且 AH=AD.  再过H作HG//PD交PA于G,则GH//平面PFD,且 AG=PA.  所以平面EHG//平面PFD,则EG//平面PFD,从而点G满足AG=PA. 

17.解:(1)由于⊙M与∠BOA的两边均相切,故M到OA及OB的距离均为⊙M的半

径,则M在∠BOA的平分线上,

    同理,N也在∠BOA的平分线上,即O,M,N

三点共线,且OMN为∠BOA的平分线,

∵M的坐标为,∴M到轴的距离为1,即

⊙M的半径为1,

则⊙M的方程为

  设⊙N的半径为,其与轴的的切点为C,连接MA、MC,

  由Rt△OAM∽Rt△OCN可知,OM:ON=MA:NC,即

  则OC=,则⊙N的方程为

(2)由对称性可知,所求的弦长等于过A点直线MN的平行线被⊙截得的弦

的长度,此弦的方程是,即:

圆心N到该直线的距离d=,则弦长=

另解:求得B(),再得过B与MN平行的直线方程,圆心N到该直线的距离=,则弦长=

(也可以直接求A点或B点到直线MN的距离,进而求得弦长)

18.解(1)由题意的中垂线方程分别为

于是圆心坐标为…………………………………4分

=,即   所以

于是 ,所以  即 ………………8分

(2)假设相切, 则,……………………………………………………10分

,………13分这与矛盾.

故直线不能与圆相切. ………………………………………………16分

19.解(Ⅰ)∵

         ∴                               

,令,得,列表如下:

2

0

递减

极小值

递增

处取得极小值

的最小值为.              

,∵,∴,又,∴.                                        

(Ⅱ)证明由(Ⅰ)知,的最小值是正数,∴对一切,恒有从而当时,恒有,故上是增函数.

(Ⅲ)证明由(Ⅱ)知:上是增函数,

     ∴当时,,   又,                     

,即,∴

故当时,恒有

20.解:(1)数列{an}的前n项和

…2分

    …………4分

是正项等比数列,,  …………6分

公比,数列         …………8分

(2)解法一:

              …………11分

,当,       …………13分

故存在正整数M,使得对一切M的最小值为2.…16分

(2)解法二:,11分

函数……13分

对于

故存在正整数M,使得对一切恒成立,M的最小值为2.……16分

 


同步练习册答案