19.(Ⅰ)取A1C1的中点F.连结DF.则 DF∥AA1.DF =.∵ ABC-A1B1C1是直三棱柱. 查看更多

 

题目列表(包括答案和解析)

如图:在正方体ABCD-A1B1C1D1中,O、O1分别是AC、A1C1的中点,E是线段D1O上一点,且D1E=λEO(λ≠0).
(Ⅰ)求证:λ取不等于0的任何值时都有BO1∥平面ACE;
(Ⅱ)λ=2时,证明:平面CDE⊥平面CD1O.

查看答案和解析>>

(2008•南京模拟)如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰三角形,AC=2,BB1=3,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角的余弦;
(2)在线段AA1上取一点F,问AF为何值时,CF⊥平面B1DF?

查看答案和解析>>

正三棱柱ABC-A1B1C1中,AB=2,AA1=1,D为A1C1的中点,线段B1C上的点M满足B1M=λB1C,若向量AD与BM的夹角小于45º,求实数λ的取值范围

 

查看答案和解析>>

如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰三角形,AC=2,BB1=3,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角的余弦;
(2)在线段AA1上取一点F,问AF为何值时,CF⊥平面B1DF?

查看答案和解析>>

如图:在正方体ABCD-A1B1C1D1中,O、O1分别是AC、A1C1的中点,E是线段D1O上一点,且D1E=λEO(λ≠0).
(Ⅰ)求证:λ取不等于0的任何值时都有BO1∥平面ACE;
(Ⅱ)λ=2时,证明:平面CDE⊥平面CD1O.

查看答案和解析>>


同步练习册答案