(注意:为正方形的中心) 查看更多

 

题目列表(包括答案和解析)

图(a)是正方形纸板制成的一副七巧板.
(1)请你在图(a)中给它的每一小块用①~⑦编号(编号直接标在每一小块对应图形内部的空白处;每小块只能与一个编号对应,每个编号只能和一个小块对应),并同时满足以下三个条件:
条件1:编号为①~③的三小块可以拼成一个轴对称图形;
条件2:编号为④~⑥的三小块可以拼成一个中心对称图形;
条件3:编号为⑦的小块是中心对称图形.
(2)请你在图(b)中画出编号为①~③的三小块拼出的轴对称图形;在图(c)中画出编号为④~⑥的三小块拼出的中心对称图形.(注意:没有编号不得分)

查看答案和解析>>

图(a)是正方形纸板制成的一副七巧板.
(1)请你在图(a)中给它的每一小块用①~⑦编号(编号直接标在每一小块对应图形内部的空白处;每小块只能与一个编号对应,每个编号只能和一个小块对应),并同时满足以下三个条件:
条件1:编号为①~③的三小块可以拼成一个轴对称图形;
条件2:编号为④~⑥的三小块可以拼成一个中心对称图形;
条件3:编号为⑦的小块是中心对称图形.
(2)请你在图(b)中画出编号为①~③的三小块拼出的轴对称图形;在图(c)中画出编号为④~⑥的三小块拼出的中心对称图形.(注意:没有编号不得分)

查看答案和解析>>

图(a)是正方形纸板制成的一副七巧板.
(1)请你在图(a)中给它的每一小块用①~⑦编号(编号直接标在每一小块对应图形内部的空白处;每小块只能与一个编号对应,每个编号只能和一个小块对应),并同时满足以下三个条件:
条件1:编号为①~③的三小块可以拼成一个轴对称图形;
条件2:编号为④~⑥的三小块可以拼成一个中心对称图形;
条件3:编号为⑦的小块是中心对称图形.
(2)请你在图(b)中画出编号为①~③的三小块拼出的轴对称图形;在图(c)中画出编号为④~⑥的三小块拼出的中心对称图形.(注意:没有编号不得分)

查看答案和解析>>

投掷一枚质地均匀的正方体骰子.
(1)下列说法中正确的有                 .(填序号)
①向上一面点数为1点和3点的可能性一样大;
②投掷6次,向上一面点数为1点的一定会出现1次;
③连续投掷2次,向上一面的点数之和不可能等于13.
(2)如果小明连续投掷了10次,其中有3次出现向上一面点数为6点,这时小明说:投掷正方体骰子,向上一面点数为6点的概率是.你同意他的说法吗?说说你的理由.
(3)为了估计投掷正方体骰子出现6点朝上的概率,小亮采用转盘来代替骰子做实验.下图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上红、白两种颜色,使得转动转盘,当转盘停止转动后,指针落在红色区域的概率与投掷正方体骰子出现6点朝上的概率相同.
(友情提醒:在转盘上用文字注明颜色和扇形圆心角的度数.)

查看答案和解析>>

如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(3,-1).
(1)将△ABC的顶点A平移到点A1,画出平移后的△A1B1C1,并写出C1的坐标
 
,将△ABC平移的距离是
 

(2)画出△A1B1C1绕点O旋转180°的△A2B2C2,并写出点C2的坐标
 
.如果△A1B1C1中任意一点M1的坐标为(x,y),那么它的对应点M2的坐标是
 

(3)在第二象限以原点O为位似中心,将△ABC放大,使它们的位似比为1:2的△A3B3C3,画出放大后的图形.如果△ABC中任意一点M的坐标为(x,y),那么它的对应点M3的坐标是
 

(4)△ABC与△A2B2C2关于点P成中心对称,在图中标注点P,则点P的坐标是
 

精英家教网

查看答案和解析>>

选择题: CABDA   BBADA   BB

4、原式

由条件可求得:    原式   故选D

5、由题得,则是公比为的等比数列,则,故选答案

6、由已知可得,直线的方程

直线过两个整点,(),即,故应选B

7、令,则,其值域为.由

对数函数的单调性可知:,且的最小值

故选答案

8、共有个四位数,其中个位数字是1,且恰好有两个相同数字的四位数分为两类:一类:“1”重复,有个;另一类;其他三个数字之一重复,有种。所以答案为:A

9、由题意可知满足的轨迹是双曲线的右支,根据“单曲线型直线”的定义可知,就是求哪条直线与双曲线的右支有交点,故选D

10、选。可以证明D点和AB的中点E到P点和C点的距离相等,所以排除B和C选项。满足的点在PC的中垂面上,PC的中垂面与ABCD的交线是直线,从而选A。

11、解:以的平分线所在直线为轴,建立坐标系,设,则

所以

,故当且仅当,即为正三角形时,  故选B

12、

的最小值为,故选答案

二、填空题

13、

14、利用正弦定理可将已知等式变为

,  

时,有最大值

15、

16、。画图分析得在二面角内的那一部分的体积是球的体积的,所以

三、解答题:

17、解:

(1)由

上是增函数,

可额可得

18、(1)如图建立空间直角坐标系,则

分别为的重心,

,即

(2)(i)平面

,平面的法向量为

平面的法向量为

,即二面角的大小为

(ii)设平面的法向量

,由解得

到平面的距离为

18、解:(I)抽取的球的标号可能为1,2,3,4

分别为0,1,2,3:分别为

因此的所有取值为0,1,2,3,4,5

时,可取最大值5,此时

(Ⅱ)当时,的所有取值为(1,2),此时

时,的所有取值为(1,1),(1,3),(2,2),此时

时,的所有取值为(1,4),(2,1),(2,3),(3,2)此时

时,的所有取值为(2,4),(3,1),(3,3),(4,2)此时

时,的所有取值为(3,4),(4,1),(4,3),此时

的分布列为:

0

1

2

3

4

5

20解:(1)

   故

(Ⅱ)由(I)知

。当时,

时,

(Ⅲ)

①-②得

 

21、(I)解:依题设得椭圆的方程为

直线的方程分别为

如图,设其中

满足方程

上知

所以,化简得

解得

(Ⅱ)解法一:根据点到直线的距离公式和①式知,点的距离分别为

,所以四边形的面积为

即当时,上式取等号,所以的最大值为2

解法二:由题设,

由①得

故四边形的面积为+=

时,上式取等号,所以的最大值为

22、解:(I)由题设可得

函数上是增函数,

时,不等式恒成立。

时,的最大值为1,则实数的取值范围是

(Ⅱ)当时,

时,,于是上单调递减;

时,,于是上单调递增。

综上所述,当时,函数上的最小值为,当时,

函数上的最大值为

(Ⅲ)当时,由(Ⅰ)知上是增函数

对于任意的正整数,有,则

成立,

 


同步练习册答案