题目列表(包括答案和解析)
3+
| ||
| 2 |
3-
| ||
| 2 |
3+
| ||
| 2 |
3-
| ||
| 2 |
如图,三棱锥
中,侧面
底面
,
,且
,
.(Ⅰ)求证:
平面
;
(Ⅱ)若
为侧棱PB的中点,求直线AE与底面
所成角的正弦值.
![]()
【解析】第一问中,利用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以
第二问中结合取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,因为PA=PC,所以PO⊥AC,同(Ⅰ)易证
平面ABC,又EH//PO,所以EH平面
ABC ,
则
为直线AE与底面ABC 所成角,
![]()
解
(Ⅰ) 证明:由用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以![]()
………………………………………………6分
(Ⅱ)如图, 取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,
因为PA=PC,所以PO⊥AC,同(Ⅰ)易证
平面ABC,
又EH//PO,所以EH平面
ABC ,
则
为直线AE与底面ABC 所成角,
且
………………………………………10分
又PO=1/2AC=
,也所以有EH=1/2PO=
,
由(Ⅰ)已证
平面PBC,所以
,即
,
故
,
于是![]()
所以直线AE与底面ABC 所成角的正弦值为![]()
![]()
如图,在四棱锥
中,
⊥底面
,底面
为正方形,
,
,
分别是
,
的中点.
(I)求证:
平面
;
(II)求证:
;
(III)设PD=AD=a, 求三棱锥B-EFC的体积.
![]()
【解析】第一问利用线面平行的判定定理,
,得到![]()
第二问中,利用![]()
,所以![]()
又因为
,
,从而得![]()
第三问中,借助于等体积法来求解三棱锥B-EFC的体积.
(Ⅰ)证明:![]()
分别是
的中点, ![]()
,
. …4分
(Ⅱ)证明:
四边形
为正方形,
.
,
.
,
,
.
,
. ………8分
(Ⅲ)解:连接AC,DB相交于O,连接OF, 则OF⊥面ABCD,
∴![]()
![]()
已知函数
.
(Ⅰ)讨论函数
的单调性;
(Ⅱ)设
,证明:对任意
,
.
1.选修4-1:几何证明选讲
如图,
的角平分线
的延长线交它的外接圆于点![]()
(Ⅰ)证明:
∽△
;
(Ⅱ)若
的面积
,求
的大小.
证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.
因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.
故△ABE∽△ADC.
(Ⅱ)因为△ABE∽△ADC,所以
,即AB·AC=AD·AE.
又S=
AB·ACsin∠BAC,且S=
AD·AE,故AB·ACsin∠BAC=AD·AE.
则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com