[解答](1)由+=12.=27.且>0,所以=3.=9. 从而. 在已知中.令n=1.得 当时...两式相减得.. . (2) 当n=1时..当n=2时.. 当n=3时..当n=4时.. 猜想:时. 以下用数学归纳法证明:(i)n=4时.已证. (ii)设n=k(时..即.则n=k+1时. .时.成立 由(i) (ii)知时. 综上所述.当n=1.2.3时. .当时. 解法二:当n=1.2.3时.同解法一, 当时. = . 综上所述.当n=1.2.3时. .当时.21世纪教育网 查看更多

 

题目列表(包括答案和解析)

2009年,某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润S(万元)与销售时间t(月)之间的关系(即前t个月的利润总和S与t之间的关系).根据图象提供的信息解答下列问题:

(1)由已知图象上的三点坐标,求累积利润S(万元)与时间t(月)之间的函数关系式;

(2)求截止到第几月末公司累积利润可达到30万元;

(3)求第八个月公司所获利润是多少万元?

查看答案和解析>>

设事件A发生的概率为P,若在A发生的条件下B发生的概率为P′,则由A产生B的概率为PP′,根据这一规律解答下题:一种掷硬币走跳棋的游戏:棋盘上有第0,1,2,3,…,100,共101站,设棋子跳到第n站的概率为Pn,一枚棋子开始在第0站(即P0=1),由棋手每掷一次硬币,棋子向前跳动一次,若硬币出现正面则棋子向前跳动一站,出现反面则向前跳动两站,直到棋子跳到第99站(获胜)或100站(失败)时,游戏结束.已知硬币出现正反面的概率都为
12

(1)求P1,P2,P3,并根据棋子跳到第n+1站的情况,试用Pn,Pn-1表示Pn+1
(2)设an=Pn-Pn-1(1≤n≤100),求证:数列{an}是等比数列,并求出{an}的通项公式;
(3)求玩该游戏获胜的概率.

查看答案和解析>>

学生李明解以下问题已知α,β,?均为锐角,且sinα+sin?=sinβ,cosβ+cos?=cosα求α-β的值
其解法如下:由已知sinα-sinβ=-sin?,cosα-cosβ=cos?,两式平方相加得2-2cos(α-β)=1
cos(α-β)=
1
2
又α,β均锐角
-
π
2
<α-β<
π
2

α-β=±
π
3

请判断上述解答是否正确?若不正确请予以指正.

查看答案和解析>>

20、设非空集合S具有如下性质:①元素都是正整数;②若x∈S,则10-x∈S.
(1)请你写出符合条件,且分别含有一个、二个、三个元素的集合S各一个;
(2)是否存在恰有6个元素的集合S?若存在,写出所有的集合S;若不存在,请说明理由;
(3)由(1)、(2)的解答过程启发我们,可以得出哪些关于集合S的一般性结论(要求至少写出两个结论)?

查看答案和解析>>

如图,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1
精英家教网
(1)求证:BE=EB1
(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.
注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).
精英家教网
(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.
①∵
 

∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,
②∵
 

∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.
③∵
 

∴BE∥FG,四边形BEGF是平行四边形,BE=FG,
④∵
 

∴FG∥AA1,△AA1C∽△FGC,
⑤∵
 

FG=
1
2
AA1=
1
2
BB1
,即BE=
1
2
BB1,故BE=EB1

查看答案和解析>>


同步练习册答案