∴当m>0时.2mcos2q>0.即f()>f() 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=a•lnx+b•x2在点(1,f(1))处的切线方程为x-y-1=0.
(1)求f(x)的表达式;
(2)若f(x)满足f(x)≥g(x)恒成立,则称f(x)是g(x)的一个“上界函数”,如果函数f(x)为g(x)=
t
x
-lnx
(t为实数)的一个“上界函数”,求t的取值范围;
(3)当m>0时,讨论F(x)=f(x)+
x2
2
-
m2+1
m
x
在区间(0,2)上极值点的个数.

查看答案和解析>>

已知函数f(x)=mx3-x2+nx+13(m、n∈R).
(1)若函数f(x)在x=-2与x=1时取得极值,求m、n的值;
(2)当m=n=0时,若f(x)在闭区间[a,b](a<b)上有最小值4a,最大值4b,求区间[a,b].

查看答案和解析>>

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F,左右顶点分别为A、C,上顶点为B,过F,B,C三点作圆P,其中圆心P的坐标为(m,n).
(Ⅰ)当m+n≤0时,椭圆的离心率的取值范围.
(Ⅱ)直线AB能否和圆P相切?证明你的结论.

查看答案和解析>>

已知函数f(x)=(x2-mx+m)•ex(m∈R).
(Ⅰ)若函数f(x)存在零点,求实数m的取值范围;
(Ⅱ)当m<0时,求函数f(x)的单调区间;并确定此时f(x)是否存在最小值,如果存在,求出最小值,如果不存在,请说明理由.

查看答案和解析>>

已知f(x)为R上的偶函数,当x≥0时,f(x)=2ex
(1)当x<0时,求f(x)的解析式;
(2)当m>0时,比较f(m-1)与f(3-m)的大小;
(3)求最小的整数m(m>1),使得存在实数t,对任意的x∈[1,m],都有f(x+t)≤2ex.

查看答案和解析>>


同步练习册答案