精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x2-mx+m)•ex(m∈R).
(Ⅰ)若函数f(x)存在零点,求实数m的取值范围;
(Ⅱ)当m<0时,求函数f(x)的单调区间;并确定此时f(x)是否存在最小值,如果存在,求出最小值,如果不存在,请说明理由.
分析:(1)因为ex>0,所以将f(x)有零点转化为g(x)=x2-mx+m二次函数有零点的问题,即判别式大于等于0,可求解.
(2)对函数f(x)进行求导,令导函数等于0求出x的值,然后根据导函数的正负情况判断原函数的单调性可判断函数是否有最小值.
解答:解:(Ⅰ)设f(x)有零点,即函数g(x)=x2-mx+m有零点,
所以m2-4m≥0,解得m≥4或m≤0.
(Ⅱ)f'(x)=(2x-m)•ex+(x2-mx+m)•ex=x(x-m+2)ex
令f'(x)=0,得x=0或x=m-2,
因为m<0时,所以m-2<0,
当x∈(-∞,m-2)时,f'(x)>0,函数f(x)单调递增;
当x∈(m-2,0)时,f'(x)<0,函数f(x)单调递减;
当x∈(0,+∞)时,f'(x)>0,函数f(x)单调递增.
此时,f(x)存在最小值.f(x)的极小值为f(0)=m<0.
根据f(x)的单调性,f(x)在区间(m-2,+∞)上的最小值为m,
解f(x)=0,得f(x)的零点为x1=
m-
m2-4m
2
x2=
m+
m2-4m
2

结合f(x)=(x2-mx+m)•ex
可得在区间(-∞,x1)和(x2,+∞)上,f(x)>0
因为m<0,所以x1<0<x2
并且x1-(m-2)=
m-
m2-4m
2
-m+2=
-m+4-
m2-4m
2
-m+4-
m2-4m+4
2

=
-m+4-|m-2|
2
=
-m+4-(2-m)
2
=1>0

即x1>m-2,
综上,在区间(-∞,x1)和(x2,+∞)上,f(x)>0,f(x)在区间(m-2,+∞)上的最小值为m,m<0,
所以,当m<0时f(x)存在最小值,最小值为m.
点评:本题主要考查函数的单调、极值与其导函数之间的关系.导数是高等数学下放到高中的内容,也是高考的热点问题,每年必考,要求学生们要给予充分的重视.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案