(1)若.求证:平面平面, 查看更多

 

题目列表(包括答案和解析)

平面直角坐标系中,O为坐标原点,给定两点M(1,-3)N(5,1),若点C满足
OC
=t
OM
+(1-t)
ON
(t∈R)

(Ⅰ)求点C的轨迹方程;
(Ⅱ)设点C的轨迹与抛物线y2=4x交于A、B两点,求证:
OA
OB

(Ⅲ)求以AB为直径的圆的方程.

查看答案和解析>>

平面直角坐标系xOy中,已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直线l:y=kx+b上的n个点
(n∈N*,k、b均为非零常数).
(1)若数列{xn}成等差数列,求证:数列{yn}也成等差数列;
(2)若点P是直线l上一点,且
OP
=a1
OA1
+a2
OA2
,求a1+a2的值;
(3)若点P满足
OP
=a1
OA1
+a2
OA2
+…+an
OAn
,我们称
OP
是向量
OA1
OA2
,…,
OAn
的线性组合,{an}是该线性组合的系数数列.当
OP
是向量
OA1
OA2
,…,
OAn
的线性组合时,请参考以下线索:
①系数数列{an}需满足怎样的条件,点P会落在直线l上?
②若点P落在直线l上,系数数列{an}会满足怎样的结论?
③能否根据你给出的系数数列{an}满足的条件,确定在直线l上的点P的个数或坐标?
试提出一个相关命题(或猜想)并开展研究,写出你的研究过程.[本小题将根据你提出的命题(或猜想)的完备程度和研究过程中体现的思维层次,给予不同的评分].

查看答案和解析>>

平面直角坐标系中,O为坐标原点,已知两点M(1,-3)、N(5,1),若点C满足
OC
=t
OM
+(1-t)
ON
(t∈R),点C的轨迹与抛物线:y2=4x交于A、B两点.
(Ⅰ)求证:
OA
OB

(Ⅱ)在x轴上是否存在一点P(m,0)(m∈R),使得过P点的直线交抛物线于D、E两点,并以该弦DE为直径的圆都过原点.若存在,请求出m的值及圆心的轨迹方程;若不存在,请说明理由.

查看答案和解析>>

平面向量
a
=(
3
,-1)
b
=(
1
2
3
2
)
,若存在不同时为o的实数k和x,使
m
=
a
+(x2-3)
b
n
=-k
a
+x
b
m
n

(Ⅰ)试求函数关系式k=f(x).
(Ⅱ)对(Ⅰ)中的f(x),设h(x)=4f(x)-ax2在[1,+∞)上是单调函数.
①求实数a的取值范围;
②当a=-1时,如果存在x0≥1,h(x0)≥1,且h(h(x0))=x0,求证:h(x0)=x0

查看答案和解析>>

平面直角坐标系中,O为坐标原点,给定两点A(1,0)、B(0,-2),点C满足   
OC
OA
OB
,其中α
、β∈R,且α-2β=1
(1)求点C的轨迹方程;
(2)设点C的轨迹与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
交于两点M、N,且以MN为直径的圆过原点,求证:
1
a2
+
1
b2
为定值

(3)在(2)的条件下,若椭圆的离心率不大于
2
2
,求椭圆长轴长的取值范围.

查看答案和解析>>

 

一、选择题:本大题共12小题,每小题5分,共60分.

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

A

B

A

C

A

C

D

D

B

C

二、填空题:本大题共4小题,每小题4分,共16分.

13.   14.   15.   16.(-1,0)

三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.

17.解:(1)

                                                ………………3分

       又题意可得            ………………4分

       当=1时,有最大值为2,

                                      ………………6分

   (2)  ……7分

                                        …………………8分

                                   …………………9分

       由余弦定理得:a2=16+25-2×4×5cos=21           …………12分

18.解:(1) 抽取的全部结果所构成的基本事件空间为:

Ω={(-2,-2),(-2,3),(-1,-2),(-1,3),(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3)}

共10个基本事件                                              ………………2分

设使函数为增函数的事件空间为A:

则A={(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3)}有6个基本事件   ………………4分

所以,                                          …………………6分

   (2) m、n满足条件m+n-1≤0    -1≤m≤1  -1≤n≤1的区域如图所示:

使函数图像过一、二、三象限的(m,n)为区域为第一象限的阴影部分

∴所求事件的概率为       ………………12分                         

19.解:(1).连,四边形菱形  

www.ks5u.com                       ……………2分

  的中点,

  ,……………4分

     ………6分

(2).当时,使得   …………7分

,交,则 的中点,

上中线,为正三角形的中心,令菱形的边长为,则

     

             ……………………10分

   即:   。      ………………12分

20.解:(1)  是等差数列,  …………………1分

      

       从第二项开始是等比数列,  ………………6分

   (2)                           ………………7分

      

              ………………10分

       错位相减并整理得                  ………………12分

21.解:(1)∵点A在圆

          …………3分

       由椭圆的定义知:|AF1|+|AF2|=2a

                 ……………5分

   (2)∵函数

       点F1(-1,0),F2(1,0),                             ………………6分

       ①若

            ……………7分

       ②若ABx轴不垂直,设直线AB的斜率为k,则AB的方程为y=kx+1)

       由…(*)

       方程(*)有两个不同的实根.

       设点Ax1,y1),Bx2,y2),则x1x2是方程(*)的两个根

                            ………………9分

      

      

        ……10分

      

       由①②知                        ………………12分

22.解:(1)设在公共点处的切线相同

                               …………………2分

由题意知     ,∴ ……4分

得,,或(舍去)                                       

即有                           …………………6分

(2)设在公共点处的切线相同

由题意知       ,∴

得,,或(舍去)      ………………9分

即有               ……………10分

,则,于是

,即时,

,即时,                 …………………13分

的最大值为,故的最大值为 ………………14分

 


同步练习册答案