题目列表(包括答案和解析)
| AB |
| AB |
半径为5的⊙O中,直径AB的不同侧有定点C和动点P. 已知BC∶CA=4∶3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q.
【小题1】 求证:△ABC∽△PQC;
【小题2】 当点P与点C关于AB对称时,求CQ的长;
【小题3】 当点P运动到什么位置时,CQ取到最大值?求此时CQ的长;
【小题4】当点P运动到弧AB的中点时,求CQ的长.![]()
半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O与l相切于点F,DC在l上.
![]()
(1)过点B作的一条切线BE,E为切点.
①填空:如图1,当点A在⊙O上时,∠EBA的度数是 ;
②如图2,当E,A,D三点在同一直线上时,求线段OA的长;
(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.
一、选择题(本题共10小题,每小题4分,共40分)
题号
1
2
3
4
5
6
7
8
9
10
答案
D
D
C
A
A
D
B
A
C
B
二、填空题(本题共6小题,每小题5分,共30分)
11.
12.
13.
14.
15.
16.
三、解答题(本题有8小题,共80分)
17.(本题8分)
(1)原式
(2)解:
得:
,
,
把
代入①得:
,
18.(本题8分)
(1)证明:
,
,
在
和
中


(2)答案不惟一,如:
,
,
等.
19.(本题8分)
解:(1)方法一:列表得
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
方法二:画树状图


(2)获奖励的概率:
.
20.(本题8分)
(1)


(2)
,
,
.
21.(本题10分)
解:(1)
是
的切线,
,
,
.
(2)
,
,
.
(3)
,
,
,
,
,
.
22.(本题12分)
解:(1)
;40;
(2)人均进球数
.
(3)设参加训练前的人均进球数为
个,由题意得:
,解得:
.
答:参加训练前的人均进球数为4个.
23.(本题12分)
(1)


(2)由题意得:
,
,
,
(m).
(3)
,
,
设
长为
,则
,解得:
(m),即
(m).
同理
,解得
(m),
.
24.(本题14分)
解:(1)直线
的解析式为:
.
(2)方法一,
,
,
,
,
,
是等边三角形,
,
,
.
方法二,如图1,过
分别作
轴于
,
轴于
,
可求得
,
,

,
当点
与点
重合时,
,
.
,

.
(3)①当
时,见图2.
设
交
于点
,
重叠部分为直角梯形
,
作
于
.
,
,
,
,
,
,
,
,
.
随
的增大而增大,
当
时,
.
②当
时,见图3.
设
交
于点
,
交
于点
,
交
于点
,
重叠部分为五边形
.
方法一,作
于
,
,
,
,
.
方法二,由题意可得
,
,
,
,
再计算
,

.

,
当
时,
有最大值,
.
③当
时,
,即
与
重合,
设
交
于点
,
交
于点
,重叠部
分为等腰梯形
,见图4.
,
综上所述:当
时,
;
当
时,
;
当
时,
.
,
的最大值是
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com