可知当3≤x≤4时.f(x)=-2+x. 当4<x≤5时.f(x)=6-x, 周期是2 故在上减.又由|cos2|<|sin2|. ∴f>f 查看更多

 

题目列表(包括答案和解析)

己知函数f(x)=,AR.

1)证明:函数y=f(x)的图象关于点(A,1)成中心对称图形;

 (2) x[A+1,A+2]时,求证:f(x) [2,];

 (3)我们利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,x2=f(x1),x3=f(x2),…xn=f(xn1),….

在上述构造数列的过程中,如果xi+(I=2,,3,4,…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.

如果可以用上述方法构造出一个常数列{xn},求实数A的取值范围;

如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{ xn},求实数A的值.

查看答案和解析>>

己知函数f(x)=,AR.

1)证明:函数y=f(x)的图象关于点(A,1)成中心对称图形;

 (2) x[A+1,A+2]时,求证:f(x) [2,];

 (3)我们利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,x2=f(x1),x3=f(x2),…xn=f(xn1),….

在上述构造数列的过程中,如果xi+(I=2,,3,4,…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.

如果可以用上述方法构造出一个常数列{xn},求实数A的取值范围;

如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{ xn},求实数A的值.

查看答案和解析>>

已知函数f(x)的定义域为[-1,5],部分对应值如下表.

f(x)的导函数y=(x)的图象如图所示:

下列关于f(x)的命题:

①函数f(x)是周期函数;

②函数f(x)在[0,2]是减函数;

③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;

④当1<a<2时,函数y=f(x)-a有4个零点;

⑤函数y=f(x)-a的零点个数可能为0、1、2、3、4个.

其中正确命题的序号是________.

查看答案和解析>>

已知向量p=(a,x+1),q=(x,a),m=(1,y),且(p-q)∥m,y与x的函数关系式为y=f(x).

(1)求f(x);

(2)判断并证明函数y=f(x)当x>a时的单调性;

(3)我们利用函数y=f(x)构造一个数列{xn),方法如下:对于f(x)定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),….在上述构造数列的过程中,如果xi(i=1,2,3,4,…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.如果取f(x)定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的值.

查看答案和解析>>

已知f(x)是以2为周期的偶函数,当x∈[0, 1]时,f(x)=x,那么在区间[-1,3]内关于x的方程f(x)=kx+k+1(k∈R,k≠-1)的根的个数

A.不可能有3个                         B.最少有1个,最多有4个

C.最少有1个,最多有3个                D.最少有2个,最多有4个

 

查看答案和解析>>


同步练习册答案