题目列表(包括答案和解析)
观察下面两个推理过程及结论:
若锐角
满足
,以角
分别为内角构造一个三角形,依据正弦定理和余弦定理可得到等式:
,
若锐角
满足
,则
,以角
分别为内角构造一个三角形,依据正弦定理和余弦定理可以得到的等式:
.
则:若锐角
满足
,类比上面推理方法,可以得到的一个等式是______________.
观察下面两个推理过程及结论:
若锐角
满足
,以角
分别为内角构造一个三角形,依据正弦定理和余弦定理可得到等式:
,
若锐角
满足
,则
,以角
分别为内角构造一个三角形,依据正弦定理和余弦定理可以得到的等式:
.
则:若锐角
满足
,类比上面推理方法,可以得到的一个等式是______________.
观察下面两个推理过程及结论:
(1) 若锐角A, B, C满足A+B+C=
, 以角A, B, C分别为内角构造一个三角形, 依据正弦定理和余弦定理可得到等式:![]()
(2) 若锐角A, B, C满足A+B+C=
, 则
=
, 以
分别为内角构造一个三角形, 依据正弦定理和余弦定理可以
得到的等式:
则:若锐角A, B, C满
足A+B+C=
, 类比上面推理方法, 可以得到一个等式是 .
观察下面两个推理过程及结论:
(1)若锐角A,B,C满足A+B+C=
,以角A,B,C分别为内角构造一个三角形,依据正弦定理和余弦定理可得到等式:![]()
(2) 若锐角A,B,C满足A+B+C=
,则
,以角
分别为内角构造一个三角形,依据正弦定理和余弦定理可以得到的等式
.则若锐角A,B,C满足A+B+C=
,类比上面推理方法,可以得到一个等式是 .
在△ABC中,
为三个内角
为三条边,
且![]()
(I)判断△ABC的形状;
(II)若
,求
的取值范围.
【解析】本题主要考查正余弦定理及向量运算
第一问利用正弦定理可知,边化为角得到![]()
![]()
所以得到B=2C,然后利用内角和定理得到三角形的形状。
第二问中,
![]()
得到。
(1)解:由
及正弦定理有:![]()
∴B=2C,或B+2C
,若B=2C,且
,∴
,
;∴B+2C
,则A=C,∴
是等腰三角形。
(2)
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com