题目列表(包括答案和解析)
解::因为
,所以f(1)f(2)<0,因此f(x)在区间(1,2)上存在零点,又因为y=
与y=-
在(0,+
)上都是增函数,因此
在(0,+
)上是增函数,所以零点个数只有一个方法2:把函数
的零点个数个数问题转化为判断方程
解的个数问题,近而转化成判断
与
交点个数问题,在坐标系中画出图形
由图看出显然一个交点,因此函数
的零点个数只有一个
袋中有50个大小相同的号牌,其中标着0号的有5个,标着n号的有n个(n=1,2,…9),现从袋中任取一球,求所取号码的分布列,以及取得号码为偶数的概率.
已知函数![]()
(1)若函数
的图象经过P(3,4)点,求a的值;
(2)比较
大小,并写出比较过程;
(3)若
,求a的值.
【解析】本试题主要考查了指数函数的性质的运用。第一问中,因为函数
的图象经过P(3,4)点,所以
,解得
,因为
,所以
.
(2)问中,对底数a进行分类讨论,利用单调性求解得到。
(3)中,由
知,
.,指对数互化得到
,,所以
,解得所以,
或
.
解:⑴∵函数
的图象经过
∴
,即
. … 2分
又
,所以
.
………… 4分
⑵当
时,
;
当
时,
. ……………… 6分
因为,
,![]()
当
时,
在
上为增函数,∵
,∴
.
即
.当
时,
在
上为减函数,
∵
,∴
.即
. …………………… 8分
⑶由
知,
.所以,
(或
).
∴
.∴
, … 10分
∴
或
,所以,
或
.
设
为实数,首项为
,公差为
的等差数列
的前n项和为
,满足![]()
(1)若
,求
及
;
(2)求d的取值范围.
【解析】本试题主要考查了数列的求和的运用以及通项公式的运用。第一问中,利用
和已知的
,得到结论
第二问中,利用首项和公差表示
,则方程是一个有解的方程,因此判别式大于等于零,因此得到d的范围。
解:(1)因为设
为实数,首项为
,公差为
的等差数列
的前n项和为
,满足![]()
所以![]()
(2)因为![]()
得到关于首项的一个二次方程,则方程必定有解,结合判别式求解得到![]()
19C.解:由
得
,所以
,所以
,因为f(x)=x,所以
解得x=-1或-2或2,所以选C
调查某医院某段时间内婴儿出生时间与性别的关系,得到以下数据。
| 晚上 | 白天 | 合计 | |
| 男婴 | 24 | 31 | 55 |
| 女婴 | 8 | 26 | 34 |
| 合计 | 32 | 57 | 89 |
试问有多大把握认为婴儿的性别与出生时间有关系?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com