题目列表(包括答案和解析)
((本小题满分10分)选修4—4:坐标系与参数方程
已知极坐标系的极点是直角坐标系的原点,极轴与直角坐标系中
轴的正半轴重合.曲线
的极坐标方程为
,曲线
的极坐标方程是
.
![]()
(Ⅰ)求曲线
和
的直角坐标方程并画出草图;
(Ⅱ)设曲线
和
相交于
,
两点,求
.
(12分)
讨论a,b的取值对一次函数y=ax+b单调性和奇偶性的影响,并画出草图。
抛物线经过点(2,-3),它与x轴交点的横坐标是-1和3.
(1)求抛物线的解析式;
(2)用配方法求出抛物线的对称轴方程和顶点坐标;
(3)画出草图;
(4)观察图象,x取何值时,函数值小于零?x取何值时,函数值随x的增大而减小?
已知曲线
和
相交于点A,
(1)求A点坐标;
(2)分别求它们在A点处的切线方程(写成直线的一般式方程);
(3)求由曲线
在A点处的切线及
以及
轴所围成的图形面积。(画出草图)
【解析】本试题主要考察了导数的几何意义的运用,以及利用定积分求解曲边梯形的面积的综合试题。先确定切点,然后求解斜率,最后得到切线方程。而求解面积,要先求解交点,确定上限和下限,然后借助于微积分基本定理得到。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com