题目列表(包括答案和解析)
已知函数![]()
(Ⅰ)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(Ⅱ)令g(x)= f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(Ⅲ)当x∈(0,e]时,证明:![]()
【解析】本试题主要是考查了导数在研究函数中的运用。第一问中利用函数f(x)在[1,2]上是减函数,的导函数恒小于等于零,然后分离参数求解得到a的取值范围。第二问中,
假设存在实数a,使
有最小值3,利用
,对a分类讨论,进行求解得到a的值。
第三问中,![]()
因为
,这样利用单调性证明得到不等式成立。
解:(Ⅰ) ![]()
(Ⅱ) ![]()
(Ⅲ)见解析
已知函数 ![]()
R).
(Ⅰ)若
,求曲线
在点
处的的切线方程;
(Ⅱ)若
对任意 ![]()
恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当
时,
.
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:![]()
第二问中,由题意得,
即
即可。
Ⅰ)当
时,
.
,
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:
. ……5分
(Ⅱ)解法一:由题意得,
即
. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为
,所以
恒成立,
故
在
上单调递增,
……12分
要使
恒成立,则
,解得
.……15分
解法二:
……7分
(1)当
时,
在
上恒成立,
故
在
上单调递增,
即
.
……10分
(2)当
时,令
,对称轴
,
则
在
上单调递增,又
① 当
,即
时,
在
上恒成立,
所以
在
单调递增,
即
,不合题意,舍去
②当
时,
,
不合题意,舍去 14分
综上所述:
已知常数
、
都是实数,在数列
与
中
.对任何正整数
,等式
,
都成立。
(Ⅰ)当
时,求数列
与
的通项公式;
(Ⅱ)当
且
时,要使数列
是公比不为1等比数列,求
的值;
(Ⅲ)当
时,设数列
的前
项和、
的前
项和分别为
与
,
求
的值.
已知常数
、
都是实数,在数列
与
中
.对任何正整数
,等式
,
都成立。
(Ⅰ)当
时,求数列
与
的通项公式;
(Ⅱ)当
且
时,要使数列
是公比不为1等比数列,求
的值;
(Ⅲ)当
时,设数列
的前
项和、
的前
项和分别为
与
,
求
的值.
已知函数![]()
,函数
的图象与
的图象关于点
中心对称。
(1)求函数
的解析式;
(2)如果
,
,试求出使
成立的
取值范围;
(3)是否存在区间
,使
对于区间内的任意实数
,只要
,且
时,都有
恒成立?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com