题目列表(包括答案和解析)
| 1 |
| x |
| 2 |
| y |
| 1 |
| x |
| 2 |
| y |
| π |
| 2 |
| 2 |
| tan2α |
| 2 |
| 2 |
| tan2α |
| 2 |
| 2 |
| 2 |
| 1-x |
| x |
| x+1 |
| x |
已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是
(A)(1-
,2) (B)(0,2)
(C)(
-1,2) (D)(0,1+
)
【解析】 做出三角形的区域如图
,由图象可知当直线
经过点B时,截距最大,此时
,当直线经过点C时,直线截距最小.因为
轴,所以
,三角形的边长为2,设
,则
,解得
,
,因为顶点C在第一象限,所以
,即
代入直线
得
,所以
的取值范围是
,选A.
已知函数
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)设
,若对任意
,
,不等式
恒成立,求实数
的取值范围.
【解析】第一问利用
的定义域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函数
的单调递增区间是(1,3);单调递减区间是![]()
第二问中,若对任意
不等式
恒成立,问题等价于
只需研究最值即可。
解: (I)
的定义域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函数
的单调递增区间是(1,3);单调递减区间是
........4分
(II)若对任意
不等式
恒成立,
问题等价于
,
.........5分
由(I)可知,在
上,x=1是函数极小值点,这个极小值是唯一的极值点,
故也是最小值点,所以
; ............6分
![]()
当b<1时,
;
当
时,
;
当b>2时,
;
............8分
问题等价于![]()
........11分
解得b<1 或
或
即
,所以实数b的取值范围是
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com