所以函数 ----7分 查看更多

 

题目列表(包括答案和解析)

已知函数 R).

(Ⅰ)若 ,求曲线  在点  处的的切线方程;

(Ⅱ)若  对任意  恒成立,求实数a的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。

第一问中,利用当时,

因为切点为(), 则,                 

所以在点()处的曲线的切线方程为:

第二问中,由题意得,即可。

Ⅰ)当时,

,                                  

因为切点为(), 则,                  

所以在点()处的曲线的切线方程为:.    ……5分

(Ⅱ)解法一:由题意得,.      ……9分

(注:凡代入特殊值缩小范围的均给4分)

,           

因为,所以恒成立,

上单调递增,                            ……12分

要使恒成立,则,解得.……15分

解法二:                 ……7分

      (1)当时,上恒成立,

上单调递增,

.                  ……10分

(2)当时,令,对称轴

上单调递增,又    

① 当,即时,上恒成立,

所以单调递增,

,不合题意,舍去  

②当时,, 不合题意,舍去 14分

综上所述: 

 

查看答案和解析>>

已知函数f(x)=sinπx图像的一部分如图7(1),则图7(2)的函数图像所对应的函数解析式可以为(    )

图7

A.y=f(2x-)            B.y=f(2x-1)             C.y=f(x-1)           D.y=f(x-)

查看答案和解析>>

有时可用函数f(x)=描述学习某学科知识的掌握程度,其中x表示某学科知识的学习次数(x∈N+),f(x)表示对该学科知识的掌握程度,正实数a与学科知识有关.

(1)证明:当x≥7时,掌握程度的增加量f(x+1)-f(x)总是下降;

(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121],(121,127],(127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.

分析:根据已知条件作差,结合综合法可以确定作差所得的函数为减函数,从而得出结论;又根据函数模型代入数据可以解得参数a的近似值,通过对近似值所在区间加以判断并选择相应的学科.

查看答案和解析>>

(本题满分12分)探究函数的最小值,并确定取得最小值时的值,列表如下:

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

8.5

5

4.17

4.05

4.005

4

4.005

4.102

4.24

4.3

5

5.8

7.57

请观察表中值随值变化的特点,完成下列问题:

(1) 当时,在区间上递减,在区间       上递增;

所以,=       时, 取到最小值为        

(2) 由此可推断,当时,有最      值为        ,此时=     

(3) 证明: 函数在区间上递减;

(4) 若方程内有两个不相等的实数根,求实数的取值范围。

 

查看答案和解析>>

(本题满分12分)探究函数的最小值,并确定取得最小值时的值,列表如下:

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

8.5

5

4.17

4.05

4.005

4

4.005

4.102

4.24

4.3

5

5.8

7.57

请观察表中值随值变化的特点,完成下列问题:

(1) 当时,在区间上递减,在区间              上递增;

所以,=            时, 取到最小值为            

(2) 由此可推断,当时,有最      值为        ,此时=       

(3) 证明: 函数在区间上递减;

(4) 若方程内有两个不相等的实数根,求实数的取值范围。

   

查看答案和解析>>


同步练习册答案