∵在单调递减. ∴ 故 . 即有最小值.但没有最大值.---------18分 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

设函数,其中为自然对数的底数.

(1)求函数的单调区间;

(2)记曲线在点(其中)处的切线为轴、轴所围成的三角形面积为,求的最大值.

【解析】第一问利用由已知,所以

,得, 所以,在区间上,,函数在区间上单调递减; 在区间上,,函数在区间上单调递增;

第二问中,因为,所以曲线在点处切线为.

切线轴的交点为,与轴的交点为

因为,所以,  

, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时

解:(Ⅰ)由已知,所以, 由,得,  所以,在区间上,,函数在区间上单调递减; 

在区间上,,函数在区间上单调递增;  

即函数的单调递减区间为,单调递增区间为.

(Ⅱ)因为,所以曲线在点处切线为.

切线轴的交点为,与轴的交点为

因为,所以,  

, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时

所以,的最大值为

 

查看答案和解析>>

函数f(x)=x2-ax在x∈[1,4]上单调递减,则实数a的最小值为
8
8

查看答案和解析>>

函数f(x)=x-a
x
在x∈[1,4]上单调递减,则实数a的最小值为(  )

查看答案和解析>>

已知函数f(x)在定义域[a,b]上是单调函数,函数值域为[-3,5],则以下说法正确的是(    )

A.若f(a)f(b)<0,则存在x1∈[a,b],使f(x1)=0

B.f(x)在区间[a,b]上有最大值f(b)=5

C.f(x)在区间[a,b]上有最小值f(a)=-3

D.f(x)在区间[a,b]上有最大值不是f(b),最小值也不是f(a)

查看答案和解析>>


同步练习册答案