定义:若对定义域上的任意实数都有.则称函数为上的零函数.根据以上定义.“是上的零函数或是上的零函数 为“与的积函数是上的零函数 的 条件. 查看更多

 

题目列表(包括答案和解析)

定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时f(x)<0恒成立.
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)证明f(x)为减函数;若函数f(x)在[-3,3]上总有f(x)≤6成立,试确定f(1)应满足的条件;(3)解关于x的不等式
1
n
f(ax2)-f(x)>
1
n
f(a2x)-f(a)
,(n是一个给定的自然数,a<0)

查看答案和解析>>

定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.

已知函数.

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界的有界函数,求实数的取值范围;

(3)若,函数上的上界是,求的取值范围.

 

查看答案和解析>>

定义在上的函数,如果满足:对任意,存在常数,都有 成立,则称上的有界函数,其中称为函数的上界.已知函数.

(1)当时,求函数上的值域,判断函数上是否为有界函数,并说明理由;

(2)若函数上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时f(x)<0恒成立.
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)证明f(x)为减函数;若函数f(x)在[-3,3]上总有f(x)≤6成立,试确定f(1)应满足的条件;(3)解关于x的不等式,(n是一个给定的自然数,a<0)

查看答案和解析>>

 定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.

已知函数.

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界的有界函数,求实数的取值范围;

(3)若,函数上的上界是,求的取值范围.

 

 

 

 

 

 

查看答案和解析>>


同步练习册答案