解:(I)设切点.由.知抛物线在点处的切线斜率为. 故所求切线方程为.即. 查看更多

 

题目列表(包括答案和解析)

设向量.

(Ⅰ)求

(Ⅱ)若函数,求的最小值、最大值.

【解析】第一问中,利用向量的坐标表示,表示出数量积公式可得

第二问中,因为,即换元法

得到最值。

解:(I)

(II)由(I)得:

.

时,

 

查看答案和解析>>

已知函数f(x)=x3-3ax2+b(a∈R,b∈R).
(I) 设a>0,求函数f(x)的单调区间;
(Ⅱ) 设a=-1,若方程f(x)=0在[-2,2]上有且仅有一个实数解,求b的取值范围.

查看答案和解析>>

给出问题:已知满足,试判定的形状.某学生的解答如下:

解:(i)由余弦定理可得,

,

是直角三角形.

(ii)设外接圆半径为.由正弦定理可得,原式等价于

是等腰三角形.

综上可知,是等腰直角三角形.

请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果.           .

 

查看答案和解析>>

(本小题共l4分)

已知函数

   (I)设函数,求的单调区间与极值;

   (Ⅱ)设,解关于的方程

(Ⅲ)试比较的大小.

查看答案和解析>>

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)设,若对任意,不等式 恒成立,求实数的取值范围.

【解析】第一问利用的定义域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是

第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。

解: (I)的定义域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是     ........4分

(II)若对任意不等式恒成立,

问题等价于,                   .........5分

由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,

故也是最小值点,所以;            ............6分

当b<1时,

时,

当b>2时,;             ............8分

问题等价于 ........11分

解得b<1 或 或    即,所以实数b的取值范围是 

 

查看答案和解析>>


同步练习册答案