题目列表(包括答案和解析)
已知
,且
.
(1)求
的值;
(2)求
的值.
【解析】本试题主要考查了二项式定理的运用,以及系数求和的赋值思想的运用。第一问中,因为
,所以
,可得
,第二问中,因为
,所以
,所以
,利用组合数性质可知。
解:(1)因为
,所以
, ……3分
化简可得
,且
,解得
. …………6分
(2)
,所以
,
所以
,![]()
已知函数
定义域为R,且
,对任意
恒有
,
(1)求函数
的表达式;
(2)若方程
=
有三个实数解,求实数
的取值范围;
【解析】第一问中,利用因为
,对任意
恒有
,
![]()
第二问中,因为方程
=
有三个实数解,所以![]()
又因为
当![]()
;
当![]()
从而得到范围。
解:(1)因为
,对任意
恒有
,
![]()
(2)因为方程
=
有三个实数解,所以![]()
又因为
,当![]()
;
当![]()
;当![]()
![]()
,![]()
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com