答案:C解析:当a=3时.直线l1:3x+2y+9=0.直线l2:3x+2y+4=0 查看更多

 

题目列表(包括答案和解析)

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

已知曲线C:x2+
y2
a
=1
,直线l:kx-y-k=0,O为坐标原点.
(1)讨论曲线C所表示的轨迹形状;
(2)当a=-1时,直线l与曲线C相交于两点M,N,试问在曲线C上是否存在点Q,使得
OM
+
ON
OQ
?若存在,求实数λ的取值范围;若不存在,请说明理由;
(3)若直线l与x轴的交点为P,当a>0时,是否存在这样的以P为直角顶点的内接于曲线C的等腰直角三角形?若存在,求出共有几个?若不存在,请说明理由.

查看答案和解析>>

已知曲线C:x2+
y2
a
=1
,直线l:kx-y-k=0,O为坐标原点.
(1)讨论曲线C所表示的轨迹形状;
(2)当k=1时,直线l与曲线C相交于两点M,N,若|MN|=
2
,求曲线C的方程;
(3)当a=-1时,直线l与曲线C相交于两点M,N,试问在曲线C上是否存在点Q,使得
OM
+
ON
OQ
?若存在,求实数λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

己知在锐角△ABC中,角A、B、C的对边分别为a、b、c,且tanA=
3
bc
b2+c2-a2

(I )求角A大小;
(II)当a=
3
时,求B的取值范围和b2+c2的取值范围.

查看答案和解析>>

已知a,b,c分别是△ABC的三个内角A,B,C的对边,
2b-c
a
=
cosC
cosA

(1)求A的大小;
(2)当a=
3
时,求b2+c2的取值范围.

查看答案和解析>>


同步练习册答案