当a>时.函数f(x)的最小值是a+.评述:函数奇偶性的讨论问题是中学数学的基本问题.如果平时注意知识的积累.对解此题会有较大帮助.因为x∈R.f(0)=|a|+1≠0.由此排除f(x)是奇函数的可能性.运用偶函数的定义分析可知.当a=0时.f(x)是偶函数.第2题主要考查学生的分类讨论思想.对称思想. 查看更多

 

题目列表(包括答案和解析)

函数f(x)的定义域是R,对任意实数a,b都有f(a)+f(b)=f(a+b).当x>0时,f(x)>0且f(2)=3.
(1)判断的奇偶性、单调性;
(2)求在区间[-2,4]上的最大值、最小值;
(3)当θ∈[0,
π2
]
时,f(cos2θ-3)+f(4m-2mcosθ)>0对所有θ都成立,求实数m的取值范围.

查看答案和解析>>

函数f(x)的定义域是R,对任意实数a,b都有f(a)+f(b)=f(a+b).当x>0时,f(x)>0且f(2)=3.
(1)判断的奇偶性、单调性;
(2)求在区间[-2,4]上的最大值、最小值;
(3)当数学公式时,f(cos2θ-3)+f(4m-2mcosθ)>0对所有θ都成立,求实数m的取值范围.

查看答案和解析>>

函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤π)在一个周期内,当x=
π
6
时,y取最小值-3;当x=
3
时,y最大值3.
(I)求f(x)的解析式; 
(II)求f(x)在区间[
π
2
,π]
上的最值.

查看答案和解析>>

已知a>0,函数f(x)=x|x-a|+1(x∈R).
(1)当a=1时,求所有使f(x)=x成立的x的值;
(2)当a∈(0,3)时,求函数y=f(x)在闭区间[1,2]上的最小值;
(3)试讨论函数y=f(x)的图象与直线y=a的交点个数.

查看答案和解析>>

设函数f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y).数列{an}满足f(an+1)=
1f(-2-an)
(n∈N*
(Ⅰ)求f(0)的值,判断并证明函数f(x)的单调性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得点(t,as)、(s,at)都在直线y=kx-1上,试判断是否存在自然数M,当n>M时,a n>f(0)恒成立?若存在,求出M的最小值,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案