题目列表(包括答案和解析)
在复平面内,
是原点,向量
对应的复数是
,
=2+i。
(Ⅰ)如果点A关于实轴的对称点为点B,求向量
对应的复数
和
;
(Ⅱ)复数
,
对应的点C,D。试判断A、B、C、D四点是否在同一个圆上?并证明你的结论。
【解析】第一问中利用复数的概念可知得到由题意得,A(2,1) ∴B(2,-1)
∴
=(0,-2)
∴
=-2i ∵
(2+i)(-2i)=2-4i,
∴
=![]()
第二问中,由题意得,
=(2,1)
∴![]()
同理
,所以A、B、C、D四点到原点O的距离相等,
∴A、B、C、D四点在以O为圆心,
为半径的圆上
(Ⅰ)由题意得,A(2,1) ∴B(2,-1)
∴
=(0,-2)
∴
=-2i 3分
∵
(2+i)(-2i)=2-4i,
∴
=
2分
(Ⅱ)A、B、C、D四点在同一个圆上。 2分
证明:由题意得,
=(2,1)
∴![]()
同理
,所以A、B、C、D四点到原点O的距离相等,
∴A、B、C、D四点在以O为圆心,
为半径的圆上
(Ⅰ)求数列{bn}的通项bn;
(Ⅱ)设数列{an}的通项an=lg(1+
),记Sn是数列{an}的前n项和,试比较Sn与
lgbn+1的大小,并证明你的结论.
已知
中,
,
.设
,记
.
(1) 求
的解析式及定义域;
(2)设
,是否存在实数
,使函数
的值域为
?若存在,求出
的值;若不存在,请说明理由.
【解析】第一问利用(1)如图,在
中,由
,,
可得
,
又AC=2,故由正弦定理得
(2)中
由
可得![]()
![]()
.显然,
,则
1
当m>0的值域为![]()
m+1=3/2,n=1/2
2
当m<0,不满足
的值域为
;
因而存在实数m=1/2
的值域为
.
已知函数f(x)=
,
为常数。
(I)当
=1时,求f(x)的单调区间;
(II)若函数f(x)在区间[1,2]上为单调函数,求
的取值范围。
【解析】本试题主要考查了导数在研究函数中的运用。第一问中,利用当a=1时,f(x)=
,则f(x)的定义域是
然后求导,
,得到由
,得0<x<1;由
,得x>1;得到单调区间。第二问函数f(x)在区间[1,2]上为单调函数,则
或
在区间[1,2]上恒成立,即即
,或
在区间[1,2]上恒成立,解得a的范围。
(1)当a=1时,f(x)=
,则f(x)的定义域是![]()
。
由
,得0<x<1;由
,得x>1;
∴f(x)在(0,1)上是增函数,在(1,
上是减函数。……………6分
(2)
。若函数f(x)在区间[1,2]上为单调函数,
则
或
在区间[1,2]上恒成立。∴
,或
在区间[1,2]上恒成立。即
,或
在区间[1,2]上恒成立。
又h(x)=
在区间[1,2]上是增函数。h(x)max=(2)=
,h(x)min=h(1)=3
即![]()
,或
。 ∴![]()
,或
。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com