解析二:由sin2x>cos2x得sin2x>1-sin2x.sin2x>.因此有sinx>或sinx<-.由正弦函数的图象得2kπ+<x<2kπ+π或2kπ+π<x<2kπ+π(k∈Z).2kπ+π<x<2kπ+π可写作(2k+1)π+<x<(2k+1)π+.2k为偶数.2k+1为奇数.不等式的解可以写作nπ+<x<nπ+.n∈Z.评述:本题考查三角函数的图象和基本性质.应注意三角公式的逆向使用. 查看更多

 

题目列表(包括答案和解析)

如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,|AB|=3米,|AD|=2米,

(I)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?

(II)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

(Ⅲ)若AN的长度不少于6米,则当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

【解析】本题主要考查函数的应用,导数及均值不等式的应用等,考查学生分析问题和解决问题的能力   第一问要利用相似比得到结论。

(I)由SAMPN > 32 得 > 32 ,

∵x >2,∴,即(3x-8)(x-8)> 0

∴2<X<8/3,即AN长的取值范围是(2,8/3)或(8,+)

第二问,  

当且仅当

(3)令

∴当x > 4,y′> 0,即函数y=在(4,+∞)上单调递增,∴函数y=在[6,+∞]上也单调递增.                

∴当x=6时y=取得最小值,即SAMPN取得最小值27(平方米).

 

查看答案和解析>>

若将函数y=f(x)的图象按向量数学公式=(数学公式,1),平移得到y=sin(2x-数学公式)的图象,则f(x)的解析式为


  1. A.
    sin2x-1
  2. B.
    cos2x+1
  3. C.
    cosx2-1
  4. D.
    sin2x+1

查看答案和解析>>

(2012•许昌二模)已知函数f(x)=
x
x+2
(x>0)
.如下定义一列函数:f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn-1(x)),…,n∈N*,那么由归纳推理可得函数fn(x)的解析式是fn(x)=
x
(2n-1)x+2n
x
(2n-1)x+2n

查看答案和解析>>

 D

[解析] 依题意得0<a<1,于是由f(1-)>1得loga(1-)>logaa,0<1-<a,由此解得1<x<,因此不等式f(1-)>1的解集是(1,),选D.

查看答案和解析>>

已知中,.设,记.

(1)   求的解析式及定义域;

(2)设,是否存在实数,使函数的值域为?若存在,求出的值;若不存在,请说明理由.

【解析】第一问利用(1)如图,在中,由,,

可得

又AC=2,故由正弦定理得

 

(2)中

可得.显然,,则

1当m>0的值域为m+1=3/2,n=1/2

2当m<0,不满足的值域为

因而存在实数m=1/2的值域为.

 

查看答案和解析>>


同步练习册答案