∴-a<0.又x1-x2<0.∴f(x1)-f(x2)>0.即f(x1)>f(x2).所以.当a≥1时.函数f(x)在区间[0.+∞)上是单调递减函数. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ax2+2bx+4c(a,b,c∈R,a≠0).
(1)若函数f(x)的图象与直线y=±x均无公共点,求证:4b2-16ac<-1;
(2)若b=4,c=
34
时,对于给定的负数a,有一个最大的正数M(a),使x∈[0,M(a)]时,都有|f(x)|≤5,求a为何值时M(a)最大?并求M(a)的最大值;
(3)若a>0,且a+b=1,又|x|≤2时,恒有|f(x)|≤2,求f(x)的解析式.

查看答案和解析>>

已知函数f(x)=ax2+2bx+4c(a,b,c∈R,a≠0).
(1)若函数f(x)的图象与直线y=±x均无公共点,求证:4b2-16ac<-1;
(2)若时,对于给定的负数a,有一个最大的正数M(a),使x∈[0,M(a)]时,都有?f(x)?≤5,求a为何值时M(a)最大?并求M(a)的最大值;
(3)若a>0,且a+b=1,又|x|≤2时,恒有|f(x)|≤2,求f(x)的解析式.

查看答案和解析>>

已知点列An(xn,0)满足:
A0An
A1An+1
=a-1
,其中n∈N,又已知x0=-1,x1=1,a>1.
(1)若xn+1=f(xn)(n∈N*),求f(x)的表达式;
(2)已知点B(
a
,0)
,记an=|BAn|(n∈N*),且an+1<an成立,试求a的取值范围;
(3)设(2)中的数列an的前n项和为Sn,试求:Sn
a
-1
2-
a

查看答案和解析>>

(2011•武进区模拟)函数f(x)=
1
2
ax2-bx-lnx
,a>0,f'(1)=0.
(1)①试用含有a的式子表示b;②求f(x)的单调区间;
(2)对于函数图象上的不同两点A(x1,y1),B(x2,y2),如果在函数图象上存在点P(x0,y0)(其中x0在x1与x2之间),使得点P处的切线l∥AB,则称AB存在“伴随切线”,当x0=
x1+x2
2
时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图象上是否存在两点A、B,使得AB存在“中值伴随切线”?若存在,求出A、B的坐标;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=lnx-
1
2
ax2+bx
(a>0),且f′(1)=0.
(Ⅰ)试用含有a的式子表示b,并求f(x)的极值;
(Ⅱ)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2),如果在函数图象上存在点M(x0,y0)(其中x0∈(x1,x2)),使得点M处的切线l∥AB,则称AB存在“伴随切线”.特别地,当x0=
x1+x2
2
时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图象上是否存在两点A、B使得它存在“中值伴随切线”,若存在,求出A、B的坐标,若不存在,说明理由.

查看答案和解析>>


同步练习册答案