设点.动圆经过点且和直线:相切. 记动圆的圆心的轨迹为曲线. 查看更多

 

题目列表(包括答案和解析)

(08年昆明市适应考试)(12分)设点,动圆经过点且和直线相切. 记动圆的圆心的轨迹为曲线.

(Ⅰ)求曲线的方程;

(Ⅱ)设点为直线上的动点,过点作曲线的切线为切点),

证明:直线必过定点并指出定点坐标.

查看答案和解析>>

(09年莱西一中模拟文)(12分)

设点,动圆经过点且和直线相切,记动圆的圆心的轨迹为曲线.

(Ⅰ)求曲线的方程;

(Ⅱ)设点为直线上的动点,过点作曲线的切线为切点),

证明:直线 必过定点并指出定点坐标.

查看答案和解析>>

过点O(0,0)的圆C与直线y=2x-8相切于点P(4,0).
(1)求圆C的方程;
(2)已知点B的坐标为(0,2),设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值.
(3)在圆C上是否存在两点M,N关于直线y=kx-1对称,且以MN为直径的圆经过原点?若存在,写出直线MN的方程;若不存在,说明理由.

查看答案和解析>>

设点动圆P经过点F且和直线相切,记动圆的圆心P的轨迹为曲线W。

(1)求曲线W的方程;

(2)过点F作互相垂直的直线,分别交曲线W于A,B和C,D。求四边形ABCD面积的最小值。

(3)分别在A、B两点作曲线W的切线,这两条切线的交点记为Q。

求证:QA⊥QB,且点Q在某一定直线上。

查看答案和解析>>

已知动圆过定点,且与直线l:相切,其中p>0.
(Ⅰ)求动圆圆心C的轨迹方程;
(Ⅱ)设A(x,y)为轨迹C上一定点,经过A作直线AB、AC 分别交抛物线于B、C 两点,若 AB 和AC 的斜率之积为常数c.求证:直线 BC 经过一定点,并求出该定点的坐标.

查看答案和解析>>

一、选择题(每小题5分,共60分)

1.A   2.A   3.B   4.D   5.C   6.C   7.B   8.B   9.B   10.D   11.C    12.D

 

二、填空题(每小题5分,共20分)

13.2     14.    15.    16.③④

 

三、解答题(共70分)

17. (本小题满分10分)

解:(Ⅰ)由  可得:

     又     ;        ………………………… 5分

(Ⅱ)

    

.                               ………………………………………… 10分

 

 

18.(本小题满分12分)

解:(Ⅰ)设A队得分为2分的事件为,

  ………… 4分

(Ⅱ)的可能取值为3 , 2 , 1 , 0 ;   

,    ,    , ,  

0

1

2

3

的分布列为:                          

                       

                                                                                                            

………… 8分

      于是 , ……………… 9分

,    ∴     ……………………… 11分

由于, 故B队比A队实力较强.    ……………………… 12分

 

19.(本小题满分12分)

解法一

(Ⅰ)连结

     ∵平面,平面∩平面

又∵的中点

的中点

    ∵

是二面角的平面角.

    在直角三角形中,   ………… 6分

(Ⅱ)解:过,垂足为,连结

是三角形的中位线,

,又

     ∴平面

在平面上的射影,

又∵,由三垂线定理逆定理,得

为二面角的平面角

在直角三角形中,

   

    ∴二面角的大小为.      ……………… 12分

 

解法二:

(Ⅰ)建立如图所示空间坐标系,则,

平面的法向量为

,

平面 ,.

所以点是棱的中点.

平面的法向量

(Ⅱ)设平面的法向量为,平面的法向量

∵二面角为锐角

∴二面角的大小为

 

 

 

20.(本小题满分12分)

解:(Ⅰ)的定义域为.

,令得:

所以内为增函数,在内为减函数.     ……………… 6分

  (Ⅱ)由题意得:,

为递增函数,;

为递增函数,

的取值范围为.                                  ……………… 12分

 

21. (本小题满分12分)

解:(Ⅰ)过点垂直直线于点

依题意得:

所以动点的轨迹为是以为焦点,直线为准线的抛物线,

即曲线的方程是                                ………………………4分

(Ⅱ)设  ,则

知,, ∴

又∵切线AQ的方程为:,注意到

切线AQ的方程可化为:

在切线AQ上, ∴    

于是在直线

同理,由切线BQ的方程可得:   

于是在直线

所以,直线AB的方程为:

又把代入上式得:

∴直线AB的方程为:

∴直线AB必过定点.              ………………………12分

(Ⅱ)解法二:设,切点的坐标为,则

知,,得切线方程:

即为:,又∵在切线上,

所以可得:,又把代入上式得:

,解之得:

故直线AB的方程为:

化简得:

∴直线AB的方程为:

∴直线AB必过定点.

 

22.(本小题满分12分)

解:(Ⅰ)由

        得:

①-②得

即有,

数列是从第二项为,公比为的等比数列

  即, ……………………5分

满足该式, .  ……………………6分

(Ⅱ)  ,   要使恒成立

恒成立

为奇数时,恒成立,而的最小值为   

                             ………………………………………………10分

为偶数时,恒成立,而的最大值为 

所以,存在,使得对任意都有.  ……………………………………12分

 

 

 

 

 

 

 

 

 


同步练习册答案