设F1.F2为椭圆=1的两个焦点.P为椭圆上的一点.已知P.F1.F2是一个直角三角形的三个顶点.且|PF1|>|PF2|.求的值. 查看更多

 

题目列表(包括答案和解析)

(04年上海卷理)(18分)

设P1(x1,y1), P1(x2,y2),…, Pn(xn,yn)(n≥3,n∈N) 是二次曲线C上的点, 且a1=2, a2=2, …, an=2构成了一个公差为d(d≠0) 的等差数列, 其中O是坐标原点. 记Sn=a1+a2+…+an.

(1)      若C的方程为=1,n=3. 点P1(3,0) 及S3=255, 求点P3的坐标;

 (只需写出一个)

(2)若C的方程为(a>b>0). 点P1(a,0), 对于给定的自然数n, 当公差d变化时, 求Sn的最小值;

. (3)请选定一条除椭圆外的二次曲线C及C上的一点P1,对于给定的自然数n,写出符合条件的点P1, P2,…Pn存在的充要条件,并说明理由.

查看答案和解析>>

 (理)已知有相同两焦点F1、F2的椭圆 + y2=1(m>1)和双曲线 - y2=1(n>0),P是它们

   的一个交点,则ΔF1PF2的形状是             (    )

A.锐角三角形     B.直角三角形     C.钝有三角形    D.随m、n变化而变化

  (文)已知有相同两焦点F1、F2的椭圆+ y2=1和双曲线- y2=1,P是它们的一个交点,

   则ΔF1PF2的形状是                                         (    )

    A.锐角三角形       B.直角三角形  C.钝有三角形  D.等腰三角形

 

 

查看答案和解析>>

(2007•杨浦区二模)(文)设F1、F2分别为椭圆C:
x2
m2
+
y2
n2
=1
(m>0,n>0且m≠n)的两个焦点.
(1)若椭圆C上的点A(1,
3
2
)到两个焦点的距离之和等于4,求椭圆C的方程.
(2)如果点P是(1)中所得椭圆上的任意一点,且
PF1
PF2
=0
,求△PF1F2的面积.
(3)若椭圆C具有如下性质:设M、N是椭圆C上关于原点对称的两点,点Q是椭圆上任意一点,且直线QM与直线QN的斜率都存在,分别记为KQM、KQN,那么KQM和KQN之积是与点Q位置无关的定值.试问:双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)是否具有类似的性质?并证明你的结论.通过对上面问题进一步研究,请你概括具有上述性质的二次曲线更为一般的结论,并说明理由.

查看答案和解析>>

设F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,且椭圆上一点P(1,
3
2
)
到F1,F2两点距离之和等于4.
(Ⅰ)求此椭圆方程;
(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N,且线段MN的垂直平分线过定点G(
1
8
,0)
,求k的取值范围.

查看答案和解析>>

(文)已知有相同两焦点F1、F2的椭圆+ y2=1和双曲线- y2=1,P是它们的一个交点,则ΔF1PF2的形状是                                          (    )

    A.锐角三角形     B.直角三角形     C.钝有三角形     D.等腰三角形

 

查看答案和解析>>


同步练习册答案