tanA1ED=.故∠A1ED=60°为所求.(Ⅲ)解法一:由点C作平面A1ABB1的垂线.垂足为H.则CH的长是C到平面A1ABB1的距离.连结HB.由于AB⊥BC.得AB⊥HB.又A1E⊥AB.知HB∥A1E.且BC∥ED.∴∠HBC=∠A1ED=60°. 查看更多

 

题目列表(包括答案和解析)

已知三棱锥A-BCD内接于球O,AB=AD=AC=BD=,∠BCD=60°,则球O的表面积为

A.             B.              C.              D.

 

查看答案和解析>>

已知直平行六面体ABCD—A1B1C1D1的各条棱长均为3,∠BAD=60°,长为2的线段MN的一个端点M在DD1上运动,另一端点N在底面ABCD上运动,则MN的中点P的轨迹(曲面)与共一顶点D的三个面所围成的几何体的体积为

A.                B.                 C.               D.

查看答案和解析>>

(08年长郡中学一模文)(12分)如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在面的上方,分别以△与△为底面安装上相同的正棱锥P-ABDQ-CBD,∠APB=90°.

(Ⅰ)求证:PQBD

(Ⅱ)求二面角P-BD-Q的余弦值;    

(Ⅲ)求点P到平面QBD的距离;

 

 

查看答案和解析>>

如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:

    ①

    ②∠BAC=60°;

    ③三棱锥D—ABC是正三棱锥;

    ④平面ADC的法向量和平面ABC的法向量互相垂直.

    其中正确的是                                                        (    )

   A.①②            B.②③            C.③④          D.①④

 

查看答案和解析>>

(本题满分14分).如图所示,四棱锥PABCD的底面积ABCD是边长为1的菱形,

BCD=60°,ECD的中点,PA⊥底面积ABCDPA.

(Ⅰ)证明:平面PBE⊥平面PAB

(Ⅱ) 过PC中点F作FH//平面PBD, FH交平面ABCD 于H点,判定H点位于平面ABCD的那个具体位置?(无须证明)

(Ⅲ)求二面角ABEP的大小.

 

查看答案和解析>>


同步练习册答案