根据圆柱性质.平面ABCD⊥平面ABE.AB是交线.且EH平面ABE.所以EH⊥平面ABCD. 查看更多

 

题目列表(包括答案和解析)

如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过作圆柱的截面交下底面于.

(1)求证:

(2)若四边形ABCD是正方形,求证

(3)在(2)的条件下,求二面角A-BC-E的平面角的一个三角函数值。

【解析】第一问中,利用由圆柱的性质知:AD平行平面BCFE

又过作圆柱的截面交下底面于. 

又AE、DF是圆柱的两条母线

∥DF,且AE=DF     AD∥EF

第二问中,由线面垂直得到线线垂直。四边形ABCD是正方形  又

BC、AE是平面ABE内两条相交直线

 

第三问中,设正方形ABCD的边长为x,则在

 

由(2)可知:为二面角A-BC-E的平面角,所以

证明:(1)由圆柱的性质知:AD平行平面BCFE

又过作圆柱的截面交下底面于. 

又AE、DF是圆柱的两条母线

∥DF,且AE=DF     AD∥EF 

(2) 四边形ABCD是正方形  又

BC、AE是平面ABE内两条相交直线

 

(3)设正方形ABCD的边长为x,则在

 

由(2)可知:为二面角A-BC-E的平面角,所以

 

查看答案和解析>>

精英家教网如图,圆柱的轴截面ABCD是正方形,点E在底面的圆周上,AF⊥DE,F是垂足.
(1)求证:AF⊥DB;
(2)如果圆柱与三棱锥D-ABE的体积的比等于3π,求直线DE与平面ABCD所成的角.

查看答案和解析>>

(本小题满分12分) 如图,圆柱的轴截面ABCD是正方形,点E在底面圆周上,点F在DE上,且AF⊥DE,若圆柱的底面积与△ABE的面积之比等于π.

(Ⅰ)求证:AF⊥BD;

(Ⅱ)求直线DE与平面ABCD所成角的正切值.

查看答案和解析>>

如图,圆柱的轴截面ABCD是正方形,点E在底面圆周上,点FDE上,且AFDE,若圆柱的底面积与△ABE的面积之比等于π

(Ⅰ)求证:AFBD

(Ⅱ)求直线DE与平面ABCD所成角的正切值。

查看答案和解析>>

如图,圆柱的轴截面ABCD是正方形,点E在底面的圆周上,AF⊥DE,F是垂足.
(1)求证:AF⊥DB;
(2)如果圆柱与三棱锥D-ABE的体积的比等于3π,求直线DE与平面ABCD所成的角.

查看答案和解析>>


同步练习册答案