题目列表(包括答案和解析)
在前面的学习中,我们通过对同一面积的不同表达和比较,根据图①和图②发现并验证了平方差公式和完全平方公式
这种利用面积关系解决问题的方法,使抽象的数量关系因集合直观而形象化。
![]()
【研究速算】
提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?
几何建模:
用矩形的面积表示两个正数的乘积,以47×43为例:
(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面。
(2)分析:原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果。
![]()
归纳提炼:
两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述) .
【研究方程】
提出问题:怎么图解一元二次方程![]()
几何建模:
(1)变形:![]()
(2)画四个长为
,宽为
的矩形,构造图④
![]()
(3)分析:图中的大正方形面积可以有两种不同的表达方式,
或四个长
,宽
的矩形之和,加上中间边长为2的小正方形面积
即: ![]()
∵![]()
∴![]()
∴![]()
∵![]()
∴![]()
归纳提炼:求关于
的一元二次方程
的解
要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长)
【研究不等关系】
提出问题:怎么运用矩形面积表示
与
的大小关系(其中
)?
几何建模:
(1)画长
,宽
的矩形,按图⑤方式分割
![]()
(2)变形:![]()
(3)分析:图⑤中大矩形的面积可以表示为
;阴影部分面积可以表示为
,
画点部分的面积可表示为
,由图形的部分与整体的关系可知:
>
,即
>![]()
归纳提炼:
当
,
时,表示
与
的大小关系
根据题意,设
,
,要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长)
| 1 |
| 2 |
| 1 |
| 2 |
| 7 |
| 8 |
| 7 |
| 8 |
一.1.C; 2.C; 3.C; 4.B; 5.D; 6.B; 7.A; 8.B; 9.A; 10.C。
二.11.x≥2; 12.1; 13.25°; 14.145; 15.16;
16.180; 17.①,③; 18..files/image270.gif)
三.19解:原式
?????????????????????????????????????????????????????????????????????????? 2分
???????????????????????????????????????????????????????????????????????????????????????????? 5分
当
时,原式
.??????????????????????????????????????????????????????? 7分.
20.解:(1)
(名),
本次调查了90名学生.?????????????????????????????????????????????????????????????????????????????????????? (2分)
补全的条形统计图如下:
![]() ![]() ![]() (名),
(3)略(语言表述积极进取,健康向上即可得分).?????????????????????????????????????????????? (7分) 21.(本题满分8分) 解:(1)如图,由题意得,∠EAD=45°,∠FBD=30°. ∴ ∠EAC=∠EAD+∠DAC =45°+15°=60°. ∵ AE∥BF∥CD, ∴ ∠FBC=∠EAC=60°. ∴ ∠DBC=30°. ???????????????????????????????????????? 2分 又∵ ∠DBC=∠DAB+∠ADB, ∴ ∠ADB=15°. ∴ ∠DAB=∠ADB. ∴ BD=AB=2. 即B,D之间的距离为 (2)过B作BO⊥DC,交其延长线于点O, 在Rt△DBO中,BD=2,∠DBO=60°. ∴ DO=2×sin60°=2× 在Rt△CBO中,∠CBO=30°,CO=BOtan30°= ∴ CD=DO-CO= 即C,D之间的距离为
(2)290,甲,20.????????????????????????????????????????????????????????????????????????????????? 6分(每空1分) (3)在5月17日,甲厂生产帐篷50顶,乙厂生产帐篷30顶.???????????????????????????????????? 6分 设乙厂每天生产帐篷的数量提高了
答:乙厂每天生产帐篷的数量提高了
23.解:(1)① 等边三角形;②重叠三角形 (2)用含
(3)能;t=2。.............................................................10分. 24.本小题满分10分. (Ⅰ)证明 将△ 则△
又由 由
得 又 ∴△ 有 ∴ ∴在Rt△ 得 (Ⅱ)关系式
则△ 有
又由 由
得 又 ∴△ 有 ∴ ∴在Rt△ 得 (3).能;在直线AB上取点M,N使∠MCN=45°......................10分 25.(本题满分12分) 解:(1)设正方形的边长为
即 解得
(注:通过观察、验证直接写出正确结果给3分) (2)有侧面积最大的情况. 设正方形的边长为 则
即 改写为
即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.?????????????? 7分
设正方形的边长为 若按图1所示的方法剪折,则
即
若按图2所示的方法剪折,则
即
比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为 说明:解答题各小题只给了一种解答及评分说明,其他解法只要步骤合理,解答正确,均应给出相应分数. 26.(本小题满分12分) 解:(1)在Rt△ABC中, 由题意知:AP = 5-t,AQ = 2t, 若PQ∥BC,则△APQ ∽△ABC, ∴ ∴
(2)过点P作PH⊥AC于H. ∵△APH ∽△ABC, ∴ ∴ ∴ ∴ (3)若PQ把△ABC周长平分, 则AP+AQ=BP+BC+CQ. ∴ 解得: 若PQ把△ABC面积平分, 则 ∵ t=1代入上面方程不成立, ∴不存在这一时刻t,使线段PQ把Rt△ACB的周长和面积同时平分.???????????????? 9′ (4)过点P作PM⊥AC于M,PN⊥BC于N,
∵PM⊥AC于M, ∴QM=CM. ∵PN⊥BC于N,易知△PBN∽△ABC. ∴ ∴ ∴ ∴ 解得: ∴当 此时 在Rt△PMC中, ∴菱形PQP ′ C边长为
同步练习册答案 湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区 违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。 ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号 |