7.A 解析:∵y=x-3.∴当y=5时.5=x-3.x=8.即a=8. 查看更多

 

题目列表(包括答案和解析)

如图①,在Rt△AOB中,∠AOB=90°,AB=5,cosA=
35
.一动点P从点O出发,以每秒1个单位长度的速度沿OB方向匀速运动;另一动点Q从点B出发,以每秒1个单位长度的速度沿BO方向匀速运动.两动点同时出发,当第一次相遇时即停止运动.在点P、Q运动的过程中,以PQ为一边作正方形PQMN,使正方形PQMN和△AOB在线段OB的同侧.设运动时间为t(单位:秒).

(1)求OA和OB的长度;
(2)在点P、Q运动的过程中,设正方形PQMN和△AOB重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;
(3)如图②,现以△AOB的直角边OB为x轴,顶点O为原点建立平面直角坐标系xOy.取OB的中点C,将过点A、C、B的抛物线记为抛物线T.
①求抛物线T的函数解析式;
②设抛物线T的顶点为点D.在点P、Q运动的过程中,设正方形PQMN的对角线PM、QN交于点E,连接DE、DN.是否存在这样的t,使得△DEN是以EN、DE为两腰或以EN、DN为两腰的等腰三角形?若存在,请求出对应的t的值;若不存在,请说明理由.

查看答案和解析>>

如图,矩形ABCD中,AB=8,BC=10,点P在矩形的边DC上由D向C运动.沿直线AP翻折△ADP,形成如下四种情形.设DP=x,△ADP和矩形重叠部分(阴影)的面积为y.

(1)如图丁,当点P运动到与C重合时,求重叠部分的面积y;
(2)如图乙,当点P运动到何处时,翻折△ADP后,点D恰好落在BC边上这时重叠部分的面积y等于多少?
(3)阅读材料:已知锐角α≠45°,tan2α是角2α的正切值,它可以用角α的正切值tanα来表示,即数学公式(α≠45°).根据上述阅读材料,求出用x表示y的解析式,并指出x的取值范围.
(提示:在图丙中可设∠DAP=a)

查看答案和解析>>

如图,矩形ABCD中,AB=8,BC=10,点P在矩形的边DC上由D向C运动.沿直线AP翻折△ADP,形成如下四种情形,设DP=x,△ADP和矩形重叠部分(阴影)的面积为y。
(1)如图丁,当点P运动到与C重合时,求重叠部分的面积y;
(2)如图乙,当点P运动到何处时,翻折△ADP后,点D恰好落在BC边上?这时重叠部分的面积y等于多少?
(3)阅读材料:已知锐角a≠45°,tan2a是角2a的正切值,它可以用角a 的正切值tana来表示,即(a≠45°)。
根据上述阅读材料,求出用x表示y的解析式,并指出x的取值范围。(提示:在图丙中可设∠DAP=a )

查看答案和解析>>

如图,矩形ABCD中,AB=8,BC=10,点P在矩形的边DC上由D向C运动.沿直线AP翻折△ADP,形成如下四种情形.设DP=x,△ADP和矩形重叠部分(阴影)的面积为y.

(1)如图丁,当点P运动到与C重合时,求重叠部分的面积y;
(2)如图乙,当点P运动到何处时,翻折△ADP后,点D恰好落在BC边上这时重叠部分的面积y等于多少?
(3)阅读材料:已知锐角α≠45°,tan2α是角2α的正切值,它可以用角α的正切值tanα来表示,即(α≠45°).根据上述阅读材料,求出用x表示y的解析式,并指出x的取值范围.
(提示:在图丙中可设∠DAP=a)

查看答案和解析>>

如图,矩形ABCD中,AB=8,BC=10,点P在矩形的边DC上由D向C运动.沿直线AP翻折△ADP,形成如下四种情形.设DP=x,△ADP和矩形重叠部分(阴影)的面积为y.

(1)如图丁,当点P运动到与C重合时,求重叠部分的面积y;
(2)如图乙,当点P运动到何处时,翻折△ADP后,点D恰好落在BC边上这时重叠部分的面积y等于多少?
(3)阅读材料:已知锐角α≠45°,tan2α是角2α的正切值,它可以用角α的正切值tanα来表示,即(α≠45°).根据上述阅读材料,求出用x表示y的解析式,并指出x的取值范围.
(提示:在图丙中可设∠DAP=a)

查看答案和解析>>


同步练习册答案