3.解析:(1)设解析式为y=kx+b.把x1=2.y1=30和x2=6.y2=10.分别代入. 查看更多

 

题目列表(包括答案和解析)

24、阅读下列材料完成后面的问题:
题目:将直线y=2x-3向右平移3个单位,再向上平移1个单位,求平移后的直线的解析式.
解:在直线y=2x-3上任取两点A(1,-1)、B(0,-3),由题意知,点A向右平移3个单位得A'(4,-1);再向上平移1个单位得A''(4,0),点B向右平移3个单位得B'(3,-3),再向上平移1个单位得B''(3,-2).
设平移后的直线的解析式为y=kx+b,则点A''(4,0)、B''(3,-2)在该直线上,可解得k=2,b=-8,所以平移后的直线的解析式为y=2x-8.
根据以上信息解答下列问题:
将一次函数y=-4x+3的图象向左平移1个单位,再向上平移2个单位,求平移后的直线解析式
y=-4x+1

查看答案和解析>>

(2012•南浔区一模)如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒一个单位长的速度运动t秒(t>0),抛物线y=-x2+bx经过点O和点P.已知矩形ABCD的三个顶点为A(1,0),B(3,0),D(1,3).
(1)求b的值(用t的代数式表示);
(2)当3<t<4时,设抛物线分别与线段AD,BC交于点M,N.
①设直线MP的解析式为y=kx+m,在点P的运动过程中,你认为k的大小是否会变化?若变化,请说明理由;若不变,请求出k的值;
②在点P的运动过程中,当OM⊥MN时,求出t的值;
(3)在点P的运动过程中,若抛物线与矩形ABCD的四条边有四个交点,请直接写出t的取值范围.

查看答案和解析>>

精英家教网如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.
操作:将矩形ABCD折叠,使点A落在边DC上.
探究:
(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)
(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.
①求b与k的函数关系式;
②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.

查看答案和解析>>

将矩形纸片ABCD分别沿两条不同的直线剪两刀,使剪得的三块纸片恰能拼成一个三角形(不能有重叠和缝隙).图1中提供了一种剪拼成等腰三角形的示意图.
精英家教网精英家教网精英家教网
(1)请提供另一种剪拼成等腰三角形方式,并在图2中画出示意图;
(2)以点B为原点,BC所在的直线为x轴建立平面直角坐标系(如图3),点D的坐标(8,5).若剪拼后得到等腰三角形MNP,使M,N点在y轴上(M在点N上方),点P在边CD上(不与C,D重合).设直线PM的解析式为y=kx+b(k≠0),则k的值为
 
,b的取值范围是
 
(不要求解题过程)

查看答案和解析>>

如图,在正方形网格中建立平面直角坐标系,格点O为原点,格点A的坐标为(-1,3).
(1)画出点A关于y轴对称的格点B,并写出点B的坐标(
1
1
3
3
);
(2)将线段OA绕着原点O顺时针旋转90°,点A落在格点C处,画出线段OA扫过的平面区域(用阴影表示),则AC的长为
10
2
π
10
2
π

(3)过点C作AC的切线CD,D为格点,设直线CD的解析式为y=kx+b,y随x的增大而
减小
减小
;(填“增大”或“减小”)
(4)连接BC,则tan∠BCD的值等于
1
2
1
2

查看答案和解析>>


同步练习册答案