37.16. 已知△顶点的直角坐标分别为. (1)若.求sin∠的值; (2)若∠是钝角.求的取值范围. 解:(1) , 当c=5时. 进而 (2)若A为钝角.则 AB﹒AC= -32<0 解得c> 显然此时有AB和AC不共线.故当A为钝角时.c的取值范围为[.+) 查看更多

 

题目列表(包括答案和解析)

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

(本小题满分16分)

某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米。

(1)分别用x表示y和S的函数关系式,并给出定义域;

(2)怎样设计能使S取得最大值,并求出最大值。

 

查看答案和解析>>

(本小题满分12分)

经统计,某大医院一个结算窗口每天排队结算的人数及相应的概率如下:

排队人数

0—5

6—10

11—15

16—20

21—25

25人以上

概    率

0.1

0.15

0.25

0.25

0.2

0.05

(1) 每天不超过20人排队结算的概率是多少?

(2) 一周7天中,若有3天以上(含3天)出现超过15人排队结算的概率大于0.75,医院就需要增加结算窗口,请问该医院是否需要增加结算窗口?

查看答案和解析>>

(文科做)(本小题满分16分)

已知椭圆过点,离心率为,圆的圆心为坐标原点,直径为椭圆的短轴,圆的方程为.过圆上任一点作圆的切线,切点为

(1)求椭圆的方程;

(2)若直线与圆的另一交点为,当弦最大时,求直线的直线方程;

(3)求的最值.

 

查看答案和解析>>

(本小题满分12分)2010年广东亚运会,某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。假设每个运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表:

甲系列:

动作

K

D

得分

100

80

40

10

概率

乙系列:

动作

K

D

得分

90

50

20

0

概率

 现该运动员最后一个出场,其之前运动员的最高得分为118分。

(I)                    若该运动员希望获得该项目的第一名,应选择哪个系列,说明理由,并求其获得第一名的概率;

(II)                 (II)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX。

 

 

查看答案和解析>>


同步练习册答案