(Ⅱ)设点C的轨迹与双曲线交于两点M.N.且以MN为直径的圆过原点.求证, 查看更多

 

题目列表(包括答案和解析)

设双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的离心率为e,右准线l与两条渐近线交于P,Q两点,右焦点为F,且△PQF为等边三角形.
(1)求双曲线C的离心率e的值;
(2)若双曲线C被直线y=ax+b截得的弦长为
b2e2
a
,求双曲线C的方程;
(3)设双曲线C经过点(1,0),以F为左焦点,L为左准线的椭圆,其短轴的端点为B,求BF中点的轨迹方程.

查看答案和解析>>

设MN是双曲线
x2
4
-
y2
3
=1
的弦,且MN与x轴垂直,A1、A2是双曲线的左、右顶点.
(Ⅰ)求直线MA1和NA2的交点的轨迹C的方程;
(Ⅱ)设直线y=x-1与轨迹C交于A、B两点,若轨迹C上的点P满足
.
OP
.
OA
.
OB
(O为坐标原点,λ,μ∈R)
求证:λ2+μ2-
10
7
λμ
为定值,并求出这个定值.

查看答案和解析>>

设MN是双曲线数学公式的弦,且MN与x轴垂直,A1、A2是双曲线的左、右顶点.
(Ⅰ)求直线MA1和NA2的交点的轨迹C的方程;
(Ⅱ)设直线y=x-1与轨迹C交于A、B两点,若轨迹C上的点P满足数学公式(O为坐标原点,λ,μ∈R)
求证:数学公式为定值,并求出这个定值.

查看答案和解析>>

设MN是双曲线
x2
4
-
y2
3
=1
的弦,且MN与x轴垂直,A1、A2是双曲线的左、右顶点.
(Ⅰ)求直线MA1和NA2的交点的轨迹C的方程;
(Ⅱ)设直线y=x-1与轨迹C交于A、B两点,若轨迹C上的点P满足
.
OP
.
OA
.
OB
(O为坐标原点,λ,μ∈R)
求证:λ2+μ2-
10
7
λμ
为定值,并求出这个定值.

查看答案和解析>>

设MN是双曲线的弦,且MN与x轴垂直,A1、A2是双曲线的左、右顶点.
(Ⅰ)求直线MA1和NA2的交点的轨迹C的方程;
(Ⅱ)设直线y=x-1与轨迹C交于A、B两点,若轨迹C上的点P满足(O为坐标原点,λ,μ∈R)
求证:为定值,并求出这个定值.

查看答案和解析>>

一.选择题

题号

1

2

3

4

5

6

7

8

9

10

答案

A

D

C

B

B

C

A

C

B

A

二.填空题

11.      12. ②     13.       14. 120     15.

三.解答题

16.解:(Ⅰ).  …………………………………3分

,得. ………………………………5分

(Ⅱ)由(Ⅰ)得.  ………………8分

,得.

,即时,函数 有最大值.  ……………………12分

17.解:设此工人一个季度里所得奖金为,则是一个离散型随机变量.由于该工人每月完成任务与否是等可能的,所以他每月完成任务的概率等于.   …………………2分

所以,  ,,

,.    …………8分

于是.

所以此工人在一个季度里所得奖金的期望为153. 75元.     ……………………12分

18.解:(Ⅰ)取BC的中点H,连结PH, 连结AH交BD于E.

.    ……………………………2分

又面,.

  ,.

,.

,即.        ………………………………………………4分

因为AH为PA在平面上的射影,.   ……………………………6分

(Ⅱ)连结PE,则由(Ⅰ)知.

为所求二面角的平面角.       ……………………………………………8分

中,由,求得.

.

即所求二面角的正切值为.     …………………………………………………12分

另解:(Ⅰ)建系设点正确2分,求出两个法向量2分,判断正确2分;

(Ⅱ)求出两个法向量3分,求出余弦值2分,求出正切值1分.

19. 解:(Ⅰ)设,则

,.

即点C的轨迹方程为.    …………………………………………………3分

(Ⅱ)由题意.

. ……………5分

.

,

.       ……………………………8分

(Ⅲ)..

.

∴双曲线实轴长的取值范围是.   ………………………………………………12分

20.解: (Ⅰ)由已知得的定义域为,.   ………………2分

由题意得对一切恒成立,

      ……………………………………………5分

时,,

.故.      …………………………………………7分

(Ⅱ)假设存在正实数,使得成立.

.  …………………9分

,得,.由于,故应舍去.

时,    ………………………………………11分

,解得.   …………………………13分

另解: 假设存在正实数,使得成立.

,则.    ………………………9分

,解得.

因为,上单调递增,在上单调递减.

.    … ……………………………………11分

,解得.   …………………………13分

21.解:(Ⅰ)由已知,得.  

则数列是公比为2的等比数列.    ……………………………………………2分

.   ……………………………………………4分

(Ⅱ).   …………………6分

恒成立,则

解得

故存在常数A,B,C,满足条件.       …………………………………………9分

   (Ⅲ)由(Ⅱ)知:

.    …………………14分

=

 

 


同步练习册答案