问中.记是所有中满足. 的项从小到大依次组成的数列.又记为的前n项和.的前n项和.求证:≥. 查看更多

 

题目列表(包括答案和解析)

已知等比数列{an}中,a1=2,a4=16.
(1)求数列{an}的通项公式;
(2)设等差数列{bn}中,b2=a2,b9=a5,求数列{bn}的通项公式;
(3)在(2)问的条件下求数列{anbn}的前n项和Sn

查看答案和解析>>

如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,PD与平面ABCD所成角是30°,点F是PB的中点,E为边BC上的动点.
(1)证明:无论点E在边BC的何处,都有PE⊥AF
(2)当BE等于何值时,二面角P-DE-A的大小为45°
(3)在(2)问的条件下,求P点到角AEF的距离.

查看答案和解析>>

(2010•江西模拟)设数列{an}为等差数列,an<an+1且前6项的平方和为70,立方和为0.
(1)求{an}的通项公式;
(2)在平面直角坐标系内,直线ln的斜率为an,且与曲线y=x2相切,与y轴交于Bn,记bn=|Bn+1Bn|,求bn
(3)对于(2)问中数列{bn}求证:|sinb1+sinb2+…+sinbn|<
3
2

查看答案和解析>>

(2012•枣庄二模)已知椭圆C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左顶点为A,右焦点为F,且过点(1,
3
2
),椭圆C的焦点与曲线2
x
2
 
-2
y
2
 
=1
的焦点重合.
(1)求椭圆C的方程;
(2)过点F任作椭圆C的一条弦PQ,直线AP、AQ分别交直线x=4于M、N两点,点M、N的纵坐标分别为m、n.请问以线段MN为直径的圆是否经过x轴上的定点?若存在,求出定点的坐标,并证明你的结论;若不存在,请说明理由.
(3)在(2)问的条件下,求以线段MN为直径的圆的面积的最小值.

查看答案和解析>>

已知椭圆的左顶点为A,右焦点为F,且过点(1,),椭圆C的焦点与曲线的焦点重合.
(1)求椭圆C的方程;
(2)过点F任作椭圆C的一条弦PQ,直线AP、AQ分别交直线x=4于M、N两点,点M、N的纵坐标分别为m、n.请问以线段MN为直径的圆是否经过x轴上的定点?若存在,求出定点的坐标,并证明你的结论;若不存在,请说明理由.
(3)在(2)问的条件下,求以线段MN为直径的圆的面积的最小值.

查看答案和解析>>

一、选择

1.A 2.B 3.B 4.D 5.(理)C (文)A 6.B 7.A 8.B 9.A 

10.B 11.(理)A (文)C 12.B 

二、填空

13.(理) (文)25,60,15 14.-672 15.2.5小时 16.(理)①,④(文)(1),;(1),;(4),

三、解答题

  17.解析:设fx)的二次项系数为m,其图象上两点为(1-x)、B(1+x)因为,所以,由x的任意性得fx)的图象关于直线x=1对称,若m>0,则x≥1时,fx)是增函数,若m<0,则x≥1时,fx)是减函数.

  ∵ 

  ∴ 当时,

  ∵ , ∴ 

  当时,同理可得

  综上:的解集是当时,为

  当时,为,或

  18.解析:(理)(1)设甲队在第五场比赛后获得冠军为事件M,则第五场比赛甲队获胜,前四场比赛甲队获胜三场

  依题意得

  (2)设甲队获得冠军为事件E,则E包含第四、第五、第六、第七场获得冠军四种情况,且它们被彼此互斥.

  ∴ 

(文)①设甲袋中恰有两个白球为事件A

 

②设甲袋内恰好有4个白球为事件B,则B包含三种情况.

甲袋中取2个白球,且乙袋中取2个白球,②甲袋中取1个白球,1个黑球,且乙袋中取1个白球,1个黑球,③甲、乙两袋中各取2个黑球.

∴ 

  19.解析:(1)取中点E,连结ME

  ∴ MCEC. ∴ MC. ∴ MCN四点共面.

  (2)连结BD,则BD在平面ABCD内的射影.

  ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD

  ∴ ∠CBD+∠BCM=90°.  ∴ MCBD.  ∴ 

  (3)连结,由是正方形,知

  ∵ MC, ∴ ⊥平面

  ∴ 平面⊥平面

  (4)∠与平面所成的角且等于45°.

  20.解析:(1)

  ∵ x≥1. ∴ 

  当x≥1时,是增函数,其最小值为

  ∴ a<0(a=0时也符合题意). ∴ a≤0.

  (2),即27-6a-3=0, ∴ a=4.

  ∴ 有极大值点,极小值点

  此时fx)在上时减函数,在,+上是增函数.

  ∴ fx)在上的最小值是,最大值是,(因).

  21.解析:(1)∵ 斜率k存在,不妨设k>0,求出M,2).直线MA方程为,直线MB方程为

  分别与椭圆方程联立,可解出

  ∴ . ∴ (定值).

  (2)设直线AB方程为,与联立,消去y

  由D>0得-4<m<4,且m≠0,点MAB的距离为

  设△AMB的面积为S. ∴ 

  当时,得

  22.解析:(1)∵ a

  ∴   ∴   ∴ 

  ∴ 

  ∴ a=2或a=3(a=3时不合题意,舍去). ∴a=2.

  (2),由可得

  . ∴ 

  ∴ b=5

  (3)由(2)知, ∴ 

  ∴ . ∴ 

  ∵ 

  当n≥3时,

  

     

  

  

  ∴ . 综上得 

 

 


同步练习册答案