故.必有一个在区间内.从而知方程①在区间上至少有一个实数解. 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=ax2+bx+c(a>0),且f(1)=-
a2

(1)求证:函数f(x)有两个零点.
(2)设x1,x2是函数f(x)的两个零点,求|x1-x2|的范围.
(3)求证:函数f(x)的零点x1,x2至少有一个在区间(0,2)内.

查看答案和解析>>

已知函数f(x)=
12
m(x-1)2-2x+3+lnx
,常数m≥1
(1)求函数f(x)单调递减区间;
(2)当m=2时,设函数g(x)=f(x)-f(2-x)+3的定义域为D,?x1,x2∈D,且x1+x2=1,求证:g(x1)+g(x2),g(x1)-g(x2),g(2x1)+g(2x2),g(2x1)-g(2x2)中必有一个是常数(不含x1,x2);
(3)若曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点,求m的值.

查看答案和解析>>

根据表格中的数据,可以判断方程ex-x-2=0必有一个根在区间(  )

x

-1

0

1

2

3

ex

0.37

1

2.78

7.39

20.09

x+2

1

2

3

4

5

A.(-1,0)                           B.(0,1)

 C.(1,2)              D.(2,3)

 

查看答案和解析>>

设函数f(x)=ax2+bx+c(a>0),且f(1)=-
(1)求证:函数f(x)有两个零点.
(2)设x1,x2是函数f(x)的两个零点,求|x1-x2|的范围.
(3)求证:函数f(x)的零点x1,x2至少有一个在区间(0,2)内.

查看答案和解析>>

已知函数,常数m≥1
(1)求函数f(x)单调递减区间;
(2)当m=2时,设函数g(x)=f(x)-f(2-x)+3的定义域为D,?x1,x2∈D,且x1+x2=1,求证:g(x1)+g(x2),g(x1)-g(x2),g(2x1)+g(2x2),g(2x1)-g(2x2)中必有一个是常数(不含x1,x2);
(3)若曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点,求m的值.

查看答案和解析>>

1.D

2.C 提示:画出满足条件A∪B=A∪C的文氏图,可知有五种情况,以观察其中一种,如图,显然只要图中阴影部分相等,B、C未必要相等,条件A∪B=A∪C仍可满足,对照四个选择支,A、B、D均可排除,故选C.

3.D

4.B 提示:由题意知,M,N,因此,),又A∩B,故集合A、B的子集中没有相同的集合,可知M、N中没有其他的公共元素,故正确的答案是M∩N=.

5.A   提示:由,当时,△

,当时,△,且,即

所以

6.A      7.D      8.A

9.D提示:设3x2-4x-32<0的一个必要不充分条件是为Q,P=.由题意知:P能推出Q,但Q不能推出P.也可理解为:PQ.

10.A          11.B

12.D    提示:由,又因为的充分而不必要条件,所以,即。可知A=或方程的两根要在区间[1,2]内,也即以下两种情况:

(1)

(2) ;综合(1)、(2)可得

二、填空题

13.3              14.     w.w.w.k.s.5.u.c.o.m

15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,则-2≤x≤6.        16. ①④


同步练习册答案