题目列表(包括答案和解析)
已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为2
,D是AB的中点.
(1)求动点D的轨迹C的方程;
(2)若过点(1,0)的直线l与曲线C交于不同两点P、Q,
①当|PQ|=3时,求直线l的方程;
②设点E(m,0)是x轴上一点,求当
·
恒为定值时E点的坐标及定值.
如图,已知不垂直于x轴的动直线l交抛物线y2=2mx(m>0)于A、B两点,若A、B满足∠AQP=∠BQP,其中Q点坐标为(-4,0),原点O为PQ的中点.
![]()
(1)证明A、P、B三点共线.
(2)当m=2时,是否存在垂直于x轴的直线
,使得
被以AP为直径的圆所截得的弦长为定值?若存在,求出
的方程;若不存在,请说明理由.
如图,已知不垂直于x轴的动直线l交抛物线y2=2mx(m>0)于A、B两点,若A、B两点满足∠AQP=∠BQP,其中Q(-4,0),原点O为PQ的中点.
(1)求证:A、P、B三点共线;
(2)当m=2时,是否存在垂直于x的直线
被以AP为直径的圆所截得的弦长L为定值?若存在,求出
的方程;若不存在,说明理由.
已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为
的椭圆,其左焦点为F.若P是圆O上一点,连结PF,过原点O作直线PF的垂线交直线l:x=-2于点Q.
![]()
(Ⅰ)求椭圆C的标准方程;
(
Ⅱ)若点P的坐标为(1,1),求证:直线PQ与圆O相切;(Ⅲ)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
对于函数f(x)=ax2+(b+1)x+b-2,(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不动点.
(1)当a=2,b=-2时,求f(x)的不动点;
(2)若对于任意实数b,函数f(x)恒有两个不相同的不动点,求a的取值范围;
(3)在(2)的条件下,y=f(x)图像上的两点A、B的横坐标x1,x2是函数f(x)的不动点,且x1+x2=
,求b的最小值.
1.D

2.C 提示:画出满足条件A∪B=A∪C的文氏图,可知有五种情况,以观察其中一种,如图,显然只要图中阴影部分相等,B、C未必要相等,条件A∪B=A∪C仍可满足,对照四个选择支,A、B、D均可排除,故选C.
3.D
4.B 提示:由题意知,
M,
N,因此,
(
),又A∩B=
,故集合A、B的子集中没有相同的集合,可知M、N中没有其他的公共元素,故正确的答案是M∩N=
.
5.A 提示:由
得
,当
时,△
,
得
,当
时,△
,且
,即
所以
6.A 7.D 8.A
9.D提示:设3x2-4x-32<0的一个必要不充分条件是为Q,P=
.由题意知:P能推出Q,但Q不能推出P.也可理解为:P
Q.
10.A 11.B
12.D 提示:由
,又因为
是
的充分而不必要条件,所以
,即
。可知A=
或方程
的两根要在区间[1,2]内,也即以下两种情况:
(1)
;
(2)
;综合(1)、(2)可得
。
二、填空题
13.3 14.
w.w.w.k.s.5.u.c.o.m
15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,则-2≤x≤6. 16. ①④
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com