方法二:向量法:二面角的平面角或(.为平面. 的法向量). 查看更多

 

题目列表(包括答案和解析)

在四棱锥中,平面,底面为矩形,.

(Ⅰ)当时,求证:

(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.

【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,

又因为,………………2分

,得证。

第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

设BQ=m,则Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得

由此知道a=2,  设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

解:(Ⅰ)当时,底面ABCD为正方形,

又因为,………………3分

(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,

则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

设BQ=m,则Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得由此知道a=2,

设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

 

查看答案和解析>>

已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC、AD的中点.

(1)求证:DE∥平面PFB;

(2)已知二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.

【解析】(1)证:DE//BF即可;

(2)可以利用向量法根据二面角P-BF-C的余弦值为,确定高PD的值,即可求出四棱锥的体积.也可利用传统方法直接作出二面角的平面角,求高PD的值也可.在找平面角时,要考虑运用三垂线或逆定理.

 

查看答案和解析>>

如图,已知四棱锥的底面ABCD为正方形,平面ABCD,E、F分别是BC,PC的中点,

(1)求证:平面

(2)求二面角的大小.

【解析】第一问利用线面垂直的判定定理和建立空间直角坐标系得到法向量来表示二面角的。

第二问中,以A为原点,如图所示建立直角坐标系

,,

设平面FAE法向量为,则

 

查看答案和解析>>

在空间中,“经过点P(x0,y0,z0),法向量为
e
=(A,B,C)
的平面的方程(即平面上任意一点的坐标(x,y,z)满足的关系)是:A(x-x0)+B(y-y0)+C(z-z0)=0”.如果给出平面α的方程是x-y+z=1,平面β的方程是
x
6
-
y
3
-
z
6
=1
,则由这两平面所成的二面角的正弦值是(  )
A、
7
3
B、
6
3
C、
78
9
D、
1
3

查看答案和解析>>


同步练习册答案