∴CD⊥平面PEF , 由PE平面PEF 得 CD⊥PE , 又AB⊥PE且梯形两腰AB.CD必相交. 查看更多

 

题目列表(包括答案和解析)

(2012•上高县模拟)如图,等腰△ABC的底边AB=6,高CD=3,点E是线段BD上异于点B、D的动点,点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE,记BE=x,V(x)表示四棱锥P-ACFE的体积.
(1)证明:CD⊥平面APE;
(2)设G是AP的中点,试判断DG与平面PCF的关系,并证明;
(3)当x为何值时,V(x)取得最大值.

查看答案和解析>>

如图,等腰△ABC的底边AB=6,高CD=3,点E是线段BD上异于点B、D的动点,点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE,记BE=x,V(x)表示四棱锥P-ACFE的体积.
(1)证明:CD⊥平面APE;
(2)设G是AP的中点,试判断DG与平面PCF的关系,并证明;
(3)当x为何值时,V(x)取得最大值.

查看答案和解析>>

(2006•朝阳区二模)四棱锥P-ABCD中,侧面APD⊥底面ABCD,∠APD=∠BAD=90°,∠ADC=60°,E为AD上一点,AE=2,AP=6,AD=CD=8,AB=2
3

(Ⅰ)求证AB⊥PE;
(Ⅱ)求证:CD∥平面PBE;
(Ⅲ)求二面角A-PD-C的大小.

查看答案和解析>>

如图,四棱锥P-ABCD中,PB⊥底面ABCD.底面ABCD为直角梯形,∠ABC=90°,AD∥BC,AB=AD=PB,BC=2AD.点E在棱PA上,且PE=2EA.
(I)求证:CD⊥平面PBD;
(II)求二面角A-BE-D的余弦值.

查看答案和解析>>

如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,点M、N分别为BC、PA的中点,且PA=AD=2,AB=1,AC=
3

(Ⅰ)证明:CD⊥平面PAC;
(Ⅱ)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.

查看答案和解析>>


同步练习册答案