题目列表(包括答案和解析)
如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为
.同样可得在B,C处正下方的矿层厚度分别为
,
,且
. 过
,
的中点
,
且与直线
平行的平面截多面体
所得的截面
为该多面体的一个中截面,其面积记为
.
(Ⅰ)证明:中截面
是梯形;
(Ⅱ)在△ABC中,记
,BC边上的高为
,面积为
. 在估测三角形
区域内正下方的矿藏储量(即多面体
的体积
)时,可用近似公式
来估算. 已知
,试判断
与V的大小关系,并加以证明.
如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为
.同样可得在B,C处正下方的矿层厚度分别为
,
,且
. 过
,
的中点
,
且与直线
平行的平面截多面体
所得的截面
为该多面体的一个中截面,其面积记为
.
(Ⅰ)证明:中截面
是梯形;
(Ⅱ)在△ABC中,记
,BC边上的高为
,面积为
. 在估测三角形
区域内正下方的矿藏储量(即多面体
的体积
)时,可用近似公式
来估算. 已知
,试判断
与V的大小关系,并加以证明.
阅读下面的文言文,完成下面5题。
李斯论 (清)姚鼐
苏子瞻谓李斯以荀卿之学乱天下,是不然。秦之乱天下之法,无待于李斯,斯亦未尝以其学事秦。
|
君子之仕也,进不隐贤;小人之仕也,无论所学识非也,即有学识甚当,见其君国行事,悖谬无义,疾首嚬蹙于私家之居,而矜夸导誉于朝庭之上,知其不义而劝为之者,谓天下将谅我之无可奈何于吾君,而不吾罪也;知其将丧国家而为之者,谓当吾身容可以免也。且夫小人虽明知世之将乱,而终不以易目前之富贵,而以富贵之谋,贻天下之乱,固有终身安享荣乐,祸遗后人,而彼宴然①无与者矣。嗟乎!秦未亡而斯先被五刑夷三族也,其天之诛恶人,亦有时而信也邪!
且夫人有为善而受教于人者矣,未闻为恶而必受教于人者也。荀卿述先王而颂言儒效,虽间有得失,而大体得治世之要。而苏氏以李斯之害天下罪及于卿,不亦远乎?行其学而害秦者,商鞅也;舍其学而害秦者,李斯也。商君禁游宦,而李斯谏逐客②,其始之不同术也,而卒出于同者,岂其本志哉!宋之世,王介甫以平生所学,建熙宁新法,其后章惇、曾布、张商英、蔡京之伦,曷尝学介甫之学耶?而以介甫之政促亡宋,与李斯事颇相类。夫世言法术之学足亡人国,固也。吾谓人臣善探其君之隐,一以委曲变化从世好者,其为人尤可畏哉!尤可畏哉!
[注释]①宴然:安闲的样子。②谏逐客:秦始皇曾发布逐客令,驱逐六国来到秦国做官的人,李斯写了著名的《谏逐客书》,提出了反对意见。
对下列句子中加点的词语的解释,不正确的一项是( )
A.非是不足以中侈君张吾之宠 中:符合
B.灭三代法而尚督责 尚:崇尚
C.知其不义而劝为之者 劝:鼓励
D.而终不以易目前之富贵 易:交换
下列各组句子中,加点的词的意义和用法相同的一组是( )
A.因秦国地形便利 不如因普遇之
B.设所遭值非始皇、二世 非其身之所种则不食
C.且夫小人虽明知世之将乱 臣死且不避,卮酒安足辞
D.不亦远乎 王之好乐甚,则齐国其庶几乎
下列各项中,加点词语与现代汉语意义不相同的一项是( )
A.小人之仕也,无论所学识非也
B.而大体得治世之要
C.而以富贵之谋,贻天下之乱
D.一以委曲变化从世好者
下列各句中对文章的阐述,不正确的一项是( )
A.苏轼认为李斯以荀卿之学辅佐秦朝行暴政,致使天下大乱,作者则认为李斯是完全舍弃了荀子的说学,李斯的做法只不过是追随时势罢了。
B.作者由论李斯事秦进而泛论人臣事君的问题,强调为臣者对于国君的“悖谬无义”之政,不应为自身的富贵而阿附甚至助长之。
C.此文主旨在于指出秦行暴政是君王自身的原因,作者所论的不可“趋时”,“中侈君张吾之宠”的道理,在今天仍有借鉴意义。
D.文章开门见山,摆出苏轼的观点,然后通过对秦国发展历史的分析,驳斥了苏说的谬论,提出了自己的见解。论证严密,逐层深入,是一篇典范的史论。
把文言文阅读材料中画横线的句子翻译成现代汉语。
(1)秦之甘于刻薄而便于严法久矣
译文:
(2)谓天下将谅我之无可奈何于吾君,而不吾罪也
译文:
(3)其始之不同术也,而卒出于同者,岂其本志哉
译文:
如图,在直三棱柱
中,底面
为等腰直角三角形,
,
为棱
上一点,且平面
平面
.
(Ⅰ)求证:
点为棱
的中点;
(Ⅱ)判断四棱锥
和
的体积是否相等,并证明。
![]()
【解析】本试题主要考查了立体几何中的体积问题的运用。第一问中,
易知
,
面
。由此知:
从而有
又点
是
的中点,所以
,所以
点为棱
的中点.
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D为BB1中点,可以得证。
(1)过点
作
于
点,取
的中点
,连
。
面
面
且相交于
,面
内的直线
,
面
。……3分
又
面
面
且相交于
,且
为等腰三角形,易知
,
面
。由此知:
,从而有
共面,又易知
面
,故有
从而有
又点
是
的中点,所以
,所以
点为棱
的中点.
…6分
(2)相等.ABC-A1B1C1为直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D为BB1中点,∴VA1-B1C1CD=VC-A1ABD
如图,已知圆锥体
的侧面积为
,底面半径
和
互相垂直,且
,
是母线
的中点.
![]()
(1)求圆锥体的体积;
(2)异面直线
与
所成角的大小(结果用反三角函数表示).
【解析】本试题主要考查了圆锥的体积和异面直线的所成的角的大小的求解。
第一问中,由题意,
得
,故![]()
从而体积
.2中取OB中点H,联结PH,AH.
由P是SB的中点知PH//SO,则
(或其补角)就是异面直线SO与PA所成角.
由SO
平面OAB,
PH
平面OAB,PH
AH.在
OAH中,由OA
OB得
;
在
中,
,PH=1/2SB=2,
,
则
,所以异面直线SO与P成角的大arctan![]()
解:(1)由题意,
得
,
故
从而体积
.
(2)如图2,取OB中点H,联结PH,AH.
![]()
由P是SB的中点知PH//SO,则
(或其补角)就是异面直线SO与PA所成角.
由SO
平面OAB,
PH
平面OAB,PH
AH.
在
OAH中,由OA
OB得
;
在
中,
,PH=1/2SB=2,
,
则
,所以异面直线SO与P成角的大arctan![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com