(2)由抛物线的顶点为. 查看更多

 

题目列表(包括答案和解析)

抛物线的顶点为M,与轴的交点为A、B(点B在点A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m、a、b。若关于的一元二次方程有两个相等的实数根。

(1)判断△ABM的形状,并说明理由。

(2)当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形。

(3)若平行于轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与轴相切,求该圆的圆心坐标。

查看答案和解析>>

已知抛物线的顶点为(0,4)且与x轴交于(-2,0),(2,0).

(1)直接写出抛物线解析式;
(2)如图,将抛物线向右平移k个单位,设平移后抛物线的顶点为D,与x轴的交点为A、B,与原抛物线的交点为P.
①当直线OD与以AB为直径的圆相切于E时,求此时k的值;
②是否存在这样的k值,使得点O、P、D三点恰好在同一条直线上?若存在,求出k值;若不存在,请说明理由.

查看答案和解析>>

已知抛物线的顶点为(1,0),且经过点(0,1).

(1)求该抛物线对应的函数的解析式;

(2)将该抛物线向下平移个单位,设得到的抛物线的顶点为A,与轴的两个交点为BC,若△ABC为等边三角形.

①求的值;

②设点A关于轴的对称点为点D,在抛物线上是否存在点P,使四边形CBDP为菱形?若存在,写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

已知抛物线的顶点为P,与y轴交于点A,与直线OP交于点B.

(1)如图1,若点P的横坐标为1,点B的坐标为(3,6),试确定抛物线的解析式;

(2)在(1)的条件下,若点M是直线AB下方抛物线上的一点,且, 求点M的坐标;

(3)如图2,若点P在第一象限,且PA=PO,过点PPDx轴于点D. 将抛物线平移,平移后的抛物线经过点AD,该抛物线与x轴的另一个交点为C,请探究四边形OABC的形状,并说明理由.

 


          

 

                   图1                             图2

查看答案和解析>>

已知抛物线的顶点为P,与轴交于点A,与直线OP交于点B.
(Ⅰ)如图1,若点P的横坐标为1,点B的坐标为(3,6),试确定抛物线的解析式;
(Ⅱ)在(Ⅰ)的条件下,若点M是直线AB下方抛物线上的一点,且,求点M的坐标;
(Ⅲ)如图2,若点P在第一象限,且PA=PO,过点P作PD⊥轴于点D.将抛物线平移,平移后的抛物线经过点A、D,该抛物线与轴的另一个交点为C,请探究四边形OABC的形状,并说明理由.

查看答案和解析>>


同步练习册答案