精英家教网 > 初中数学 > 题目详情

抛物线的顶点为M,与轴的交点为A、B(点B在点A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m、a、b。若关于的一元二次方程有两个相等的实数根。

(1)判断△ABM的形状,并说明理由。

(2)当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形。

(3)若平行于轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与轴相切,求该圆的圆心坐标。

解:(1)令,得

    由勾股定理的逆定理和抛物线的对称性知△ABM是一个以为直角边的等腰直角三角形

(2)设

∵△ABM是等腰直角三角形

∴斜边上的中线等于斜边的一半

又顶点M(-2,-1)

,即AB=2

∴A(-3,0),B(-1,0)

将B(-1,0) 代入中得

∴抛物线的解析式为,即

图略

(3)设平行于轴的直线为

解方程组

  (

∴线段CD的长为

∵以CD为直径的圆与轴相切

据题意得

解得

∴圆心坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网某抛物线是由抛物线y=-2x2向左平移2个单位得到.
(1)求抛物线的解析式,并画出此抛物线的大致图象;
(2)设抛物线的顶点为A,与y轴的交点为B.
①求线段AB的长及直线AB的解析式;
②在此抛物线的对称轴上是否存在点C,使△ABC为等腰三角形?若存在,求出这样的点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知抛物线①经过点A(-1,0)、B(4,5)、C(0,-3),其对称轴与直线BC交于点P.
(1)求抛物线①的表达式及点P的坐标;
(2)将抛物线①向右平移1个单位后再作上下平移,得到的抛物线②恰好过点P,求上下平移的方向和距离;
(3)设抛物线②的顶点为D,与y轴的交点为E,试求∠EDP的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图抛物线y=a(x-1)2+4与x轴交于A、B两点,与y轴交于点C,D是抛物线的顶点,已知CD=
2

(1)求抛物线的解析式;
(2)在抛物线上共有三个点到直线BC的距离为m,求m的值;
(3)将(1)中的抛物线向上平移t(t>0)个单位,与直线CD交于点G、H,设平移后的抛物线的顶点为D1,与y轴的交点为C1,是否存在实数t,使得DH⊥HD1,若存在,求出t的值;若不存在,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c的顶点为(1,0),且经过点(0,1).
(1)求该抛物线对应的函数的解析式;
(2)将该抛物线向下平移m(m>0)个单位,设得到的抛物线的顶点为A,与x轴的两个交点为B、C,若△ABC为等边三角形.
①求m的值;
②设点A关于x轴的对称点为点D,在抛物线上是否存在点P,使四边形CBDP为菱形?若存在,写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桂林)已知抛物线的顶点为(0,4)且与x轴交于(-2,0),(2,0).

(1)直接写出抛物线解析式;
(2)如图,将抛物线向右平移k个单位,设平移后抛物线的顶点为D,与x轴的交点为A、B,与原抛物线的交点为P.
①当直线OD与以AB为直径的圆相切于E时,求此时k的值;
②是否存在这样的k值,使得点O、P、D三点恰好在同一条直线上?若存在,求出k值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案