则..故.??????????????????? 5分 查看更多

 

题目列表(包括答案和解析)

仿照例子解题:若数学公式恒成立,求M、N的值.
解:∵数学公式,∴数学公式
数学公式,即数学公式
数学公式,解得:数学公式
请你按照上面的方法解题:若数学公式恒成立,求M、N的值.

查看答案和解析>>

唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题--将军饮马问题:
如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?
作法如下:如(1)图,从B出发向河岸引垂线,垂足为D,在AP的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.
(1)观察发现
再如(2)图,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E、F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.
作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP的最小值为
 

精英家教网
(2)实践运用
如(3)图,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+AP的最小值.
精英家教网
(3)拓展迁移
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
①求这条抛物线所对应的函数关系式;
②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)
精英家教网

查看答案和解析>>

2009年中超足球联赛于3月21日拉开帷幕.参赛球队参加比赛的场数为30场,浙江绿城队作为中超新军,2008年第一次参加取得了第9名的成绩,已在中超立足.以下是2008年15支中超球队进球统计图(其中武汉光谷队因中途退赛,故不列入统计),请解答下列问题:
精英家教网
(1)已知浙江绿城队的进球数恰好也在这15支球队中排名第9,且比15支中超球队进球数的中位数少1个,则浙江绿城队在2008年中超联赛中的进球数是
 
个,并补全图中的条形统计图;
(2)关于浙江绿城队的积分,现有以下几个相关信息:
①中超联赛决定名次办法:积分多的队名次列前;积分相等,则看积分相等队之间相互比赛,先看积分,多者列前;再看净胜球,多者列前;再是进球数,多者列前.
②足球比赛胜一场,积分3分;平一场,积分1分;负一场,积分0分,以此来计算各球队的总积分.
③浙江绿城队平的场数比负的场数多3场.
④第8名的青岛盛文队的积分为39分,第10名的河南四五队的积分为36分.
请你利用以上信息,求出浙江绿城队的积分.

查看答案和解析>>

观察发现
(1)如图1,若点A、B在直线l同侧,在直线l上找一点P,使AP+BP的值最小.
作法如下:作点B关于直线l的对称点B′,连接AB′,与直线l的交点就是所求的点P.
(2)如图2,在等边三角形ABC中,AB=4,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
作法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为
2
3
2
3

实践运用
如图3,菱形ABCD中,对角线AC、BD分别为6和8,M、N分别是边BC、CD的中点,若点P是BD上的动点,则MP+PN的最小值是
5
5

拓展延伸
(1)如图4,正方形ABCD的边长为5,∠DAC的平分线交DC于点E.若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值是
5
2
2
5
2
2

(2)如图5,在四边形ABCD的对角线BD上找一点P,使∠APB=∠CPB.保留画图痕迹,并简要写出画法.

查看答案和解析>>

9、作图题(作图2分,其于每空2分,共12分)
按要求画图,并填空:
(1)画∠AOB=60°;
(2)以O为顶点,OA为一边,画AOC=60,并使OC与OB在OA的两侧,则OA是∠COB的
平分线

(3)分别在OB、OC上取点M、N,并使OM=ON=2cm,量得点M、N间的距离是
3.4
cm(精确到0.1cm);
(4)若线段MN与OA的交点是P,量得MP=
1.7
cm,NP=
1.7
cm,故点P是线段MN的
点.

查看答案和解析>>


同步练习册答案