在Rt△BGC中.BC=.∵ CE=5. 查看更多

 

题目列表(包括答案和解析)

阅读与理解题.
阅读部分:如图1,△ABC中,∠BAC=45°,AD⊥BC于D,BD=3,DC=2,求△ABC的面积.
解:将△ADB、△ADC分别沿AB翻折得△ABE、△ACF延长EB、FC交于点G,易证四边形AEGF为正方形,设AD=x,则BG=x-3,CG=x-2,在Rt△BGC中,有BG2+GC2=BC2,即(x-3)2+(x-2)2=52  整理得x2-5x-6=0,解得x=6(x=-1舍去),进而求得S△ABC=15.
上述问题的解决方法,是将几何问题转化为代数问题,通过设元,建立方程模型,进而使问题得到了解决.那么代数问题能否用几何的方法解决呢?
理解部分:请在如图2Rt△ABC(∠C=90°)中,通过比例线段解方程:
x2+1
+
x2-24x+160
=13

查看答案和解析>>

阅读与理解题.
阅读部分:如图1,△ABC中,∠BAC=45°,AD⊥BC于D,BD=3,DC=2,求△ABC的面积.
解:将△ADB、△ADC分别沿AB翻折得△ABE、△ACF延长EB、FC交于点G,易证四边形AEGF为正方形,设AD=x,则BG=x-3,CG=x-2,在Rt△BGC中,有BG2+GC2=BC2,即(x-3)2+(x-2)2=52  整理得x2-5x-6=0,解得x=6(x=-1舍去),进而求得S△ABC=15.
上述问题的解决方法,是将几何问题转化为代数问题,通过设元,建立方程模型,进而使问题得到了解决.那么代数问题能否用几何的方法解决呢?
理解部分:请在如图2Rt△ABC(∠C=90°)中,通过比例线段解方程:

查看答案和解析>>

精英家教网在Rt△ABC中,BC=9,CA=12,∠ABC的平分线BD交AC与点D,DE⊥DB交AB于点E.
(1)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线;
(2)设⊙O交BC于点F,连接EF,求
EFAC
的值.

查看答案和解析>>

在Rt△ABC中,BC=5,AC=12,则AB=
 
,AB边上的高是
 

查看答案和解析>>

(2013•邢台一模)如图,在Rt△ABC中,BC=20cm,AC=hcm,四边形DEFC是矩形且点D、E、F在△ABC的边上,设AD=xcm,矩形DEFC的面积为ycm2
(1)当h=30cm时,求y与x之间的函数关系式;
(2)当h=30cm时,若y=96cm2,求x的值;
(3)h取何值时,y的最大值为180cm2

查看答案和解析>>


同步练习册答案