法二:故.可得. 查看更多

 

题目列表(包括答案和解析)

(1)作图题:(不要求写作法)
如图,在10×10的方格纸中,有一个格点四边形ABCD(即四边形的顶点都在格点上).
①在给出的方格纸中,画出四边形ABCD向下平移5格后的四边形A1B1C1D1
②在给出的方格纸中,画出四边形ABCD关于直线l对称的图形A2B2C2D2
精英家教网
(2)某班举行演讲革命故事的比赛中有一个抽奖活动.活动规则是:进入最后决赛的甲、乙两位同学,每人只有一次抽奖机会,在如图所示的翻奖牌正面的4个数字中任选一个数字,选中后可以得到该数字后面的奖品,第一人选中的数字,第二人就不能再选择该数字.
①求第一位抽奖的同学抽中文具与计算器的概率分别是多少?
②有同学认为,如果甲先抽,那么他抽到海宝的概率会大些,你同意这种说法吗?说明理由.
翻奖牌正面:
1 2
3 4
翻奖牌背面:
文具 计算器
计算器 海宝

查看答案和解析>>

(1)作图题:(不要求写作法)
如图,在10×10的方格纸中,有一个格点四边形ABCD(即四边形的顶点都在格点上).
①在给出的方格纸中,画出四边形ABCD向下平移5格后的四边形A1B1C1D1
②在给出的方格纸中,画出四边形ABCD关于直线l对称的图形A2B2C2D2

(2)某班举行演讲革命故事的比赛中有一个抽奖活动.活动规则是:进入最后决赛的甲、乙两位同学,每人只有一次抽奖机会,在如图所示的翻奖牌正面的4个数字中任选一个数字,选中后可以得到该数字后面的奖品,第一人选中的数字,第二人就不能再选择该数字.
①求第一位抽奖的同学抽中文具与计算器的概率分别是多少?
②有同学认为,如果甲先抽,那么他抽到海宝的概率会大些,你同意这种说法吗?说明理由.
翻奖牌正面:
12
34
翻奖牌背面:
文具计算器
计算器海宝

查看答案和解析>>

同学们应该听说过“苏武牧羊”的故事吧,这个被传诵了一千多年的故事可用这样一首诗来表述:当年苏武去北边,不知去了几多年,分明记得天边月,二百三十五番圆.同学们都能读懂苏武去北方一共牧了二百三十五个月的羊,那么他牧羊的时间应为________年.(注:古代有“十九年七闰”的说法)

查看答案和解析>>

先阅读,再利用其结论解决问题.

阅读:已知一元二次方程ax2+bx+c=0(a≠0)的两个实根为x1,x2,则有x1+x2=﹣,x1•x2=.这个结论是法国数学家韦达最先发现并证明的,故把它称为“韦达定理”.利用此定理,可以不解方程就得出x1+x2和 x1•x2的值,进而求出相关的代数式的值.

解决问题:对于一切不小于2的自然数n,关于x的一元二次方程x2﹣(n+2)x﹣2n2=0的两个根记作an,bn(n≥2),

请求出

+…的值.

查看答案和解析>>

阅读思考:我们思考解决一个数学问题,如果从某一角度用某种方法难以奏效时,不妨换一个角度去观察思考,换一种方法去处理,这样有可能使问题“迎刃而解”.
例如解方程:数学公式,这是一个高次方程,我们未学过其解法,难以求解.如果我们换一个角度(“已知”和“未知”互换),即将数学公式看做“未知数”,而将x看成“已知数”,则原方程可整理成:数学公式
b2-4ac=(-2x2-1)2-4x(x3+1)=4x2-4x+1=(2x-1)2
解得:数学公式1或数学公式
故方程可转化为一个一元一次方程数学公式和一个一元二次方程x2-x+1=数学公式,从而不难求得这个高次方程的解.
问题解决:
(1)上述解题过程中,用到的数学学习中常用的思想方法是
A、类比思想  B、函数思想  C、转化思想  D、整体思想
(2)解方程:数学公式

查看答案和解析>>


同步练习册答案