18.解:由得.又∈(.) 查看更多

 

题目列表(包括答案和解析)

解答题:解答应写出文字说明、证明过程或演算步骤。

海岛上有一座海拔1000米的山,山顶上设有一个灯塔A,上午11时,灯塔A处的值班员测得一匀速行驶的轮船在岛北偏东60°的C处,由A观察C的俯解为30°,11时10分又测得该船在岛北偏西60°的B处,由A观察B的俯角为60°。

(1)

求该船的速度(单位:千米/小时)

(2)

轮船在沿航线CB航行中,船上的瞭望员随时观测灯塔发出的导航信号,试问瞭望员在整个观测过程中,观测仰角最大是多少?

查看答案和解析>>

解:能否投中,那得看抛物线与篮圈所在直线是否有交点。因为函数的零点是-2与4,篮圈所在直线x=5在4的右边,抛物线又是开口向下的,所以投不中。

某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,

(1)他收旅客的租车费η是否也是一个随机变量?如果是,找出租车费η与行车路程ξ的关系式;

(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?这种情况下,停车累计时间是否也是一个随机变量?

查看答案和解析>>

如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过作圆柱的截面交下底面于.

(1)求证:

(2)若四边形ABCD是正方形,求证

(3)在(2)的条件下,求二面角A-BC-E的平面角的一个三角函数值。

【解析】第一问中,利用由圆柱的性质知:AD平行平面BCFE

又过作圆柱的截面交下底面于. 

又AE、DF是圆柱的两条母线

∥DF,且AE=DF     AD∥EF

第二问中,由线面垂直得到线线垂直。四边形ABCD是正方形  又

BC、AE是平面ABE内两条相交直线

 

第三问中,设正方形ABCD的边长为x,则在

 

由(2)可知:为二面角A-BC-E的平面角,所以

证明:(1)由圆柱的性质知:AD平行平面BCFE

又过作圆柱的截面交下底面于. 

又AE、DF是圆柱的两条母线

∥DF,且AE=DF     AD∥EF 

(2) 四边形ABCD是正方形  又

BC、AE是平面ABE内两条相交直线

 

(3)设正方形ABCD的边长为x,则在

 

由(2)可知:为二面角A-BC-E的平面角,所以

 

查看答案和解析>>

已知向量,且,A为锐角,求:

(1)角A的大小;

(2)求函数的单调递增区间和值域.

【解析】第一问中利用,解得   又A为锐角                 

      

第二问中,

 解得单调递增区间为

解:(1)        ……………………3分

   又A为锐角                 

                              ……………………5分

(2)

                                                  ……………………8分

  由 解得单调递增区间为

                                                  ……………………10分

 

 

查看答案和解析>>

在数列中,,其中,对任意都有:;(1)求数列的第2项和第3项;

(2)求数列的通项公式,假设,试求数列的前项和

(3)若对一切恒成立,求的取值范围。

【解析】第一问中利用)同理得到

第二问中,由题意得到:

累加法得到

第三问中,利用恒成立,转化为最小值大于等于即可。得到范围。

(1)同理得到             ……2分 

(2)由题意得到:

 又

              ……5分

 ……8分

(3)

 

查看答案和解析>>


同步练习册答案